ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ТОО «5AOIL(5AOЙЛ)» ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ЭКО НАЙС»

Раздел охраны окружающей среды Индивидуального технического проекта на бурение наклонно-направленной эксплуатационной скважины БОР-5, проектной глубиной 1650м. на месторождении Боркылдакты.

Директор ТОО «ЭКО НАЙС»

Габдрахманова Н.М.

г. Атырау, 2023

	Лист
OOC	1

СОДЕРЖАНИЕ		
СОДЕРЖАНИЕ2		
ВВЕДЕНИЕ5		
1. ОБЩИЕ СВЕДЕНИЯ7		
1.1. Существующее положение 7 1.2. Обоснование категории объекта воздействия на окружающую среду 7 2. ОСНОВНЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ7		
скудный (жусан, полынь, буюргун, колючка и др.)11		
2.1 Геологическая характеристика 12 3. ОЦЕНКА ВОЗДЕЙСТВИЯ НА состояние АТМОСФЕРНого ВОЗДУХа13		
3.1. Характеристика климатических условий 13 3.2. Характеристика современного состояния воздушной среды 14 Предполагаемое воздействие на атмосферный воздух в период проведения строительно-		
монтажных работ будет наблюдаться при лакокрасочных работах, при сварочных работах,		
при работе автотранспорта, работающего на дизельном топливе и на неэтилированном		
бензине и т.д		
3.3. Источники и масштабы расчетного химического загрязнения 65 3.4. Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух 66		
3.5. Определение нормативов допустимых выбросов загрязняющих веществ 66 3.6. Расчеты количества выбросов загрязняющих веществ в атмосферу 78 3.7. Оценка последствий загрязнения и мероприятия по снижению отрицательного воздействия 78 3.8. Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха 79		
3.9. Мероприятия по регулированию выбросов при неблагоприятных		
метеорологических условиях (НМУ) 79 4.ОЦЕНКА ВОЗДЕЙСТВИЯ ЗА СОСТОЯНИЕМ ВОД81		
4.1 Потребность в водных ресурсах для намечаемой деятельности 81 4.2. Характеристика источника водоснабжения 81 4.3. Поверхностные воды 81 4.4. Подземные воды 82		
4.5. Расчет водопотребления и водоотведения 82 4.6. Оценка воздействия на поверхностные воды в период строительства 84 4.7. Водоохранные мероприятия 84 5. ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА		
6. Оценка воздействия на окружающую среду отходов производства и потребления84		
6.1. Виды и масса отходов, образующихся в процессе строительства. Особенности		
загрязнения территории отходами производства и потребления (опасные свойства и		
физическое состояние отходов)86		
OOC 2		

М – норматива содержани	я в ветоши масел, т/год;88	
W – норматива содержани	я в ветоши влаги, т/год89	
$W = 0.15 * M_0$	89	
N = 0.12 + 0.0144 + 0.018 =	0,1524 m/год89	
6.2. Рекомендации по управлению отход	цами90	
Образование отходов В данном разде	ле рассматривается образование отходов при	
строительстве. Этапы технологическо	го цикла отходов90	
6.3. Виды и количество отходов произво	дства и потребления91	
7. ОЦЕНКА ФИЗИЧЕСКИХ ВОЗДЕЙСТВ	ИЙ НА ОКРУЖАЮЩУЮ СРЕДУ92	
7.1. Оценка возможного шумово 7.2. Оценка вибрационного возб 7.3. Оценка возможного радиац 7.4. Мероприятия по снижению 8. ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЗЕМЕЛЬ	ействия 94 ионного загрязнения района 95	
8.1. Состояние и условия землепользов	ания, земельный баланс территории, намечаемой	
	х хозяйств в соответствии с видом собственности	
	97	
8.2. Характеристика современного состо	ряния почвенного покрова97	
растительный покров 98	ых работ на почвенный покров 98 негативного воздействия на почвенно- ТЕЛЬНЫЙ МИР98	
9.1. Современное состояние ра 9.2. Оценка воздействия намеч 100	стительного покрова района 98 аемой деятельности на растительный покров	
10. ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЖИВС	ТНЫЙ МИР101	
занесенных в Красную книгу видов . 10.2. Характеристика воздейсг фауны 104	оведения работ. Наличие редких, исчезающих и животных. 101 твия объекта на видовой состав, численность ращению негативных воздействий на	
биоразнообразие, численность фау		
	и меры по предотвращению, минимизации,	
	становлению ландшафтов в случаях их нарушения	
·	АЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕДУ104	
12.1. Современные социально-экономические условия жизни местного населения104		
12.2. Оценка влияния реализаци ситуацию в регионе106	и проекта на социально-экономическую	
	Лист	
	OOC 3	

13. ОЦЕНКА ЭКОЛОГИ	ЧЕСКОГО РИСКА ПРИ АВАРИЙНЫХ СИТУАЦИЯХ106
14. ПЕРЕЧЕНЬ НОРМ И	1 СТАНДАРТОВ108
	СПИСОК ПРИЛОЖЕНИЙ
ПРИЛОЖЕНИЕ 1	Расчет выбросов загрязняющих веществ при работах
ПРИЛОЖЕНИЕ 2	Лицензия ТОО «ЭКО НАЙС» на природоохранное проектирование
приложение 3	Карты расчетов рассеивания загрязняющих веществ в приземном слое атмосферы

Лист

4

OOC

ВВЕДЕНИЕ

Генеральный проектировщик ТОО «ПРОЕКТ ЗАПАД» Заказчиком проекта является ТОО «5A OIL (5A ОЙЛ)»

Индивидуальный технический проект на бурение наклонно-направленной эксплуатационной скважины БОР-5 проектной глубиной 1650 метров на месторождении Боркылдакты в Атырауской области разработан в соответствии с «Правилами обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности» Астана, МИР РК от 30.12.2014г. №355, «Макетом рабочего проекта на строительство скважины на нефть и газ» (РД 39-0148052-537-87).

Основные проектные данные

NºNº	Наименование данных	Значение
ПП	типистовите дипиви	
11	2	3
1	Блок, площадь (месторождение)	месторождение Боркылдакты
2	Номер скважины, строящихся по данному	№ БОР-5
	проекту	
3	Расположение (суша, море)	Суша
4	Цель бурения и назначение скважины	добыча УВ сырья
		эксплуатационная
5	Проектный горизонт	Юра, Триас
6	Проектная глубина, м	
	- по вертикали	1580,0
	- по стволу	1603,84
7	Число объектов испытания (освоения)	
	- в колонне	3
	- в открытом стволе	-
8	Вид скважин (вертикальная, наклонно-	Наклонно-направленная
	направленная)	ттаклонно-направленная
9	Азимут бурения, градус	0,0
10	Максимальный зенитный угол, градус	21,0
11	Максимальная интенсивность изменения	1,71
	зенитного угла, град/30м	1,/1
12	Глубина по вертикали кровли	
	продуктивного (базисного) пласта, м	-
13	Отклонение от вертикали точки входа в	67,0
	кровлю продуктивного (базисного) пласта, м	07,0
14	Допустимое отклонение заданной точки	
	входа в кровлю продуктивного пласта от	8,59
	проектного положения (радиус круга	0,35
	допуска), м	
15	Категория скважины	Вторая
16	Металлоемкость конструкции, кг/м	55,84
17	Способ бурения	Роторный/ВЗД

	Лист
OOC	5

18	Вид привода	Дизель-электрический
19	Вид монтажа (первичный, повторный)	Первичный
20	Тип буровой установки	ZJ-30 или аналог (с грузоподъемностью не менее 170тн)
21	Тип вышки	Телескопическая
22	Наличие механизмов АСП (да, нет)	нет
23	Наличие сероводорода	Отсутствует
24	Максимальная масса колонны, тн - обсадной колонны - бурильной колонны - суммарной (при спуске секциями)	68,9 63,05 -
25	Тип установки для освоения	УПА-60 или аналог
	Продолжительность цикла строительства скважины, сутки в том числе:	96,9
	- строительно-монтажные работы	7,0
26	- подготовительные работы к бурению	7,0
	- бурение и крепление	19,0
	- испытание,	63,9
	в том числе:	
	- в открытом стволе - в эксплуатационной колонне	63,9
27	Проектная коммерческая, м/ст. месяц	2532,3
28	Сметная стоимость, в том числе возврат	договорная
29	Дежурство на буровой геологической и технологической служб	постоянно
30	Дежурство на буровой автомашины, бульдозера и крана	постоянно

Проект выполнен в соответствии с требованиями действующих нормативно-технических документов Республики Казахстан, обеспечивающих безопасную эксплуатацию запроектированного объекта.

Проект разработан в соответствии с действующими стандартами, нормами и правилами проектирования и производства строительных работ.

Проект РООС к рабочему проекту разработан в соответствии с Экологическим кодексом РК и Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Инструкции по организации и проведению экологической оценки»

OOC 6		
OOC 6		Лист
	OOC	6

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Существующее положение

В административном отношении участок расположен в Макатском районе, Атырауской области, Республика Казахстан.

С 16.07.2013г. месторождение введено в промышленную разработку согласно проекта «Технологическая схема разработки месторождения Боркылдакты», который был утвержден КГиН МИиНТ РК (Письмо исх.№ 17- 04-213-и от 08.02.2013г.).

Приведены все расчеты, необходимые для строительства скважины. Расчеты применяемых технологий строительства скважины произведены с использованием программного обеспечения «Бурсофтпроект» с учетом отечественного и мирового опыта строительства скважин. Приведены мероприятия по охране труда, технике безопасности, охране окружающей среды и недр.

1.2. Обоснование категории объекта воздействия на окружающую среду

Намечаемой деятельностью предусматривается строительство наклонно-направленной эксплуатационной скважины БОР-5 проектной глубиной 1650 метров на месторождении Боркылдакты с целью расчета конструкции скважины, бурения и добычи нефти. Согласно Приложения 1 Экологического кодекса, согласно раздела 2, п2.пп.2.1. Разведка и добыча углеводородов, относятся к объектам, для которых проведение процедуры скрининга является обязательным.

Проектные решения предусматривают недопущение ГНВП в процессе строительства скважины.

Основными из таких решений и мероприятий являются:

- выбранная конструкция скважины (при получении в процессе углубления дополнительных данных о пластовых и поровых давлений имеется возможность корректировать конструкцию скважины);
- буровой раствор выбран в соответствии с горно-геологическими условиями;
- перед подъемом бурильного инструмента предусмотрена дополнительная промывка с целью раннего обнаружения ГНВП;
- углубление скважины в интервалах, где возможно ГНВП, осуществлять в присутствии ИТР, владеющих методикой раннего обнаружения проявлений.

2. ОСНОВНЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ

Общие сведения о конструкции скважины

		Интервал спуска *, м			
Название колонны	Диаметр, мм	по вер	тикали	по	стволу
	IVIIVI	от (верх)	до (низ)	от (верх)	до (низ)
1	2	3	4	5	6
Направление	339,7мм	0	40	0	40
Кондуктор	244,5мм	0	500	0	500
Эксплуатационная	177,8мм	0	1623,09	0	1650

	Лист
OOC	7

Список документов, которые являются основанием для проектирования

№ п/п	Наименование документа		
1	2		
1	Контракт № S-PE-206-23 от 12.05.2023г.		
2	Техническое задание на разработку «Индивидуального технического проекта на бурение наклонно-направленной эксплуатационной скважины №БОР-5, проектной глубиной 1650м на месторождении Боркылдакты.		
3	Проект разработки месторождения Боркылдакты по состоянию на 01.03.2019г.		
4	«Макет рабочего проекта на строительство скважин на нефть и газ» (РД 39-0148052-537-87).		
5	СН РК 1.02-03-2011. «Порядок разработки, согласования, утверждения и состав проектной документации на строительство».		
6	Государственная лицензия №20010515 от 22.07.2020г., выданная ТОО «Проект Запад» на проектную деятельность.		

Сведения о районе буровых работ

Наименование	Значение (текст, название, величина)
1	2
Площадь (месторождение)	<u> </u>
Блок (номер и/или название)	Блок Е
Административное расположение:	
- Республика	Казахстан
- Область (край)	Атырауская
- Район	Макатский
Год ввода участка в бурение	2013
Год ввода площади (месторождения) в	Не вводилось
эксплуатацию	
Температура воздуха, градус	
- Среднегодовая	+ 8
- Наибольшая летняя	+ 30
- Наименьшая зимняя	- 25
Среднегодовое количество осадков, мм	до 160 - 200
Максимальная глубина промерзания грунта,	1,8
M.	
Продолжительность отопительного периода	150
в году, сут.	
Продолжительность зимнего периода в	120
году, сутки.	
Азимут преобладающего направления ветра	ЮВ
Наибольшая скорость ветра, м/сек	20
Метрологический пояс (при работе в море)	-
Количество штормовых дней (при работе в море)	-
Интервал залегания многолетнемерзлой породы, м	-

	Лист
OOC	8

- кровля	-
- подошва	-

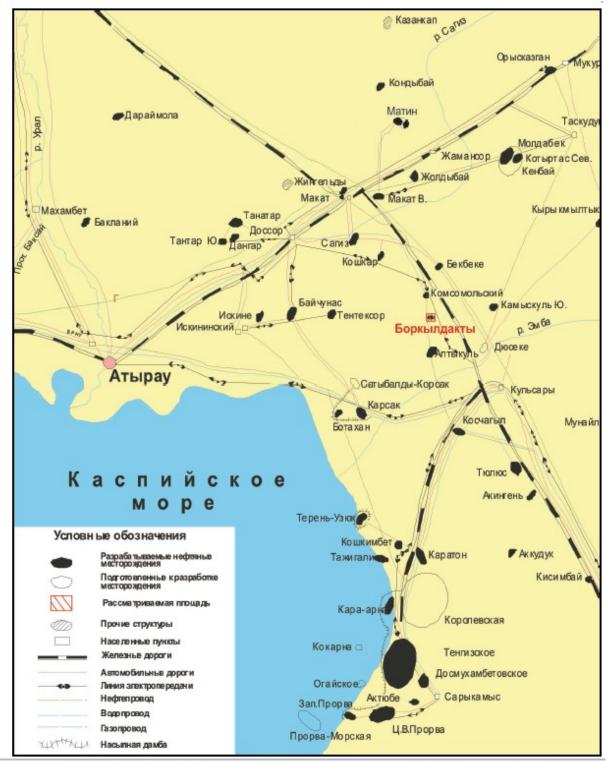
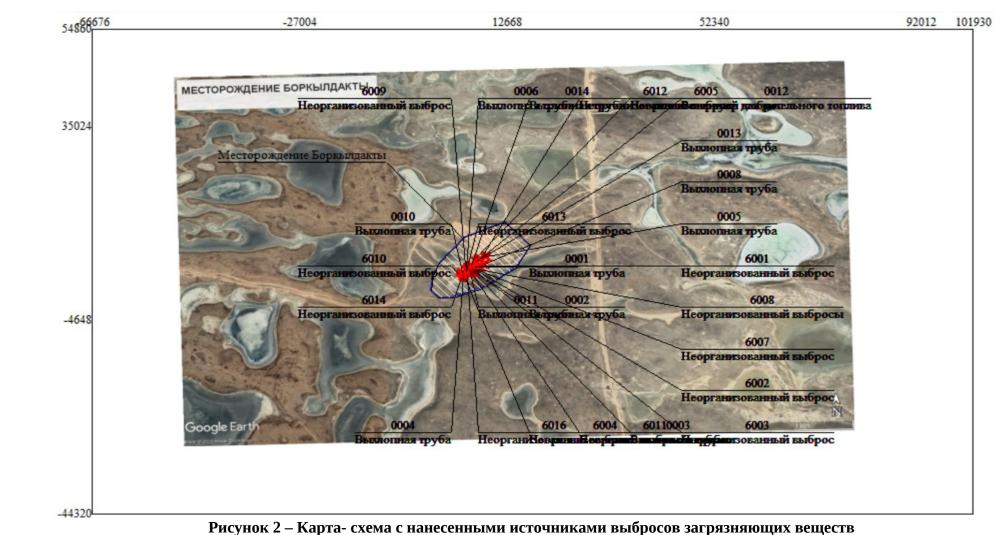



Рисунок 1.1- Обзорная схема района работ

	Лист
OOC	9

	Лист
OOC	10

Сведения о площадке строительства буровой

Наименование	Значение (текст, название, величина)
1	2
Рельеф местности	Равнина
Состояние местности	Равнинный, полу-пустынная степь, соры
Голщина	
- снежного покрова, см	до 7
- почвенного слоя, см	отсутствует
Docture in the M. Howbor	скудный (жусан, полынь, буюргун, колючка
Растительный покров	и др.)
Категория грунта	2

Размеры отводимых во временное пользование земельных участков

Назначение отводимого Размер отводимого участка, га		Источник нормы отвода земель		
1	2	3		
Строительство буровой установки и размещение оборудования и техники	1,9+0,36	Норма отвода земель для нефтяных и газовых скважин СН 459-74 п.3		

Источник и характеристики водо- и энергоснабжения, связи и местных стройматериалов

Название вида снабжения:	Источник заданного вида снабжения	Расстояние от источника до буровой, км	Характеристика водо и энергопровода, связи и стройматериалов
1	2	3	4
Водоснабжение техническое	Водозаборная	12	Автотранспорт
Водоснабжение	Промысел	12	
- пресное	Комсомольское		Автотранспорт
- питьевое			Автотранспорт
Энергоснабжение	Дизель-	-	ДВС
	электростанция		
Связь	Спутниковый	-	Радиостанция
			Радиотелефон

Сведения о подъездных путях

Протяженность, км	Характер покрытия	Ширина, м	Высота насыпи, см	Характеристика дороги	
1	2	3	4	5	
По проекту обустройства месторождения					

	Лист
000	11

Сведения о магистральных дорогах и водных транспортных путях							
Магистральные дороги			Bo	Водные транспортные пути			
Наличие (да, нет)			Название	Расстояние до буровой, км	до буровой,		Расстояние до буровой, км
1	2	3	4	5	6		
Да	Атырау- Актюбинск	30	Да	Атырау- Косчагыл- Кульсары	12		
Да	Комсомольский- Алтыкуль	12					

Данные по электростанции

Количество одновременно работающих электростанций	Тип электростанции	Мощность электростанции
1	2	3
1 (1 в резерве)	TAD1641GE VOLVO	494 кВт

2.1Геологическая характеристика

Стратиграфический разрез скважины, элементы залегания и коэффициент кавернозности пластов

Глуб залеган		Стратиграфическое подразд	ратиграфическое подразделение Элементы залегания (падения) пластов по подошве		Коэффициент кавернозности в интервале	
От (верх)	До (низ)	Название	Индекс	Угол, Азимут, Град град		Коэф кавер в ин
1	2	3	4	5	6	7
0	120	Верхний меловой	K_2			1,25
120	220	Сеноман нижнего мела	K ₁ sn			1,20
220	420	Альб нижнего мела	K ₁ al			1,20
420	575	Апт нижнего мела	K ₁ a			1,20
575	805	Баррем нижнего мела	K ₁ br			1,20
805	880	Готерив нижнего мела	K ₁ g			1,20
880	930	Верхняя Юра	J_3			1,15
930	1295	Средняя Юра	J_2			1,10
1295	1355	Нижняя Юра	J_1			1,10
1355	1650	Триас	T			1,10

	Лист
OOC	12

3. ОЦЕНКА ВОЗДЕЙСТВИЯ НА СОСТОЯНИЕ АТМОСФЕРНОГО ВОЗДУХА

В данном разделе рассмотрено воздействие на атмосферный воздух при Индивидуальном техническом проекте на бурение наклонно-направленной эксплуатационной скважины БОР-5 проектной глубиной 1650 метров на месторождении Боркылдакты. Определены возможные источники образования и выделения в атмосферу загрязняющих веществ. Составлен перечень вредных загрязняющих веществ, выбрасываемых в приземный слой атмосферы, подлежащих нормированию. Установлена номенклатура загрязняющих веществ и объем выбросов.

Продолжительность работ составляет 96,9 сут., период работ 2023г.

Строительно-монтажные работы – 7

Подготовительные работы к бурению – 7

Бурение и крепление – 19

Испытание (освоение) – 63,9

Всего работающих на площадке – 30 человек. Работы на объекте будут выполняться в 1 смену, по 10 часов (световой день).

3.1. Характеристика климатических условий

Климатическая характеристика района строительства приводится по данным метеостанций Атырау.

Климат, типичный для внутриматериковых пустынь умеренного пояса, отличается резкой континентальностью с большими колебаниями сезонных и суточных температур.

Зима непродолжительная (декабрь-февраль), малоснежная, толщина снега не превышает 10 см (в отдельные годы снежный покров практически отсутствует), с температурой воздуха днем минус 3-80 снижаясь ночью до минус 10° - минус 14° , днем случаются оттепели до $+5^{\circ}$ - $+8^{\circ}$.

Весенний период (март-апрель) характеризуется повышением температур днем до +2 - $+20^{\circ}$ С и ночью до минус $1+10^{\circ}$ С.

Снежный покров сходит к концу марта. Заморозки прекращаются в первых числах апреля.

Лето продолжительное (май-сентябрь) очень жаркое с температурой воздуха до +43 - +48°C и ночью до +20 - +32°C.

Осенний период также короткий (октябрь-ноябрь) в первый месяц теплый с температурой воздуха днем $+8 - +2^{\circ}$ ночью.

Климатические характеристики района соответствуют СП РК 2.04-01-2017 «Строительная климатология» (с изменениями от 01.04.2019 г.). Основные климатические параметры района работ приводятся в таблице 3.1.1.

Таблица 3.1.1. Основные климатические параметры района

Наименование параметра	Значение	Примечание
1. Температура воздуха °С, холодного периода года:		
• Абсолютная минимальная	-37,9	
• Наиболее холодных суток с обеспеченностью	-30,7(-29,0)	
0,98(0,92)		
• Наиболее холодной пятидневки с	-27,3(-24,9)	
обеспеченностью 0,98(0,92)		
2. Среднее число дней с оттепелью за декабрь-февраль	7	
3. Средняя месячная относительная влажность за	78%	
отопительный период		
4. Среднее количество осадков за ноябрь-март	73мм	
5. Среднее месячное атмосферное давление за год	1021гПа	
6. Среднее количество осадков за апрель-октябрь	103мм	

	Лист
OOC	13

7. Снеговая нагрузка		0,8кПа	НП к СП РК EN
			1991-1-3:2003-
			2011
8. Климатический район		IV	
9. Климатический подрайон		IVΓ	
10. Ветровой район		IV	НП к СП РК EN
			1991-1-
			4:2005/2011
11. Базовая скорость ветра	a	35м/с	НП к СП РК EN
			1991-1-
			4:2005/2011
12. Давление ветра		0,77кПа	НП к СП РК EN
			1991-1-
			4:2005/2011
13. Дорожно-климатическ	кая зона	V	

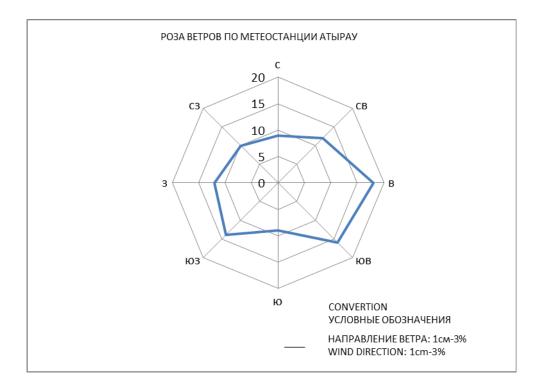


Рис. 3.1.1. Роза ветров

3.2. Характеристика современного состояния воздушной среды

Предполагаемое воздействие на атмосферный воздух в период проведения строительно-монтажных работ будет наблюдаться при лакокрасочных работах, при сварочных работах, при работе автотранспорта, работающего на дизельном топливе и на неэтилированном бензине и т.д.

Учитывая характер строительного процесса, выбросы не будут постоянными, их объемы будут изменяться в соответствии со строительными операциями и сочетания используемого в каждый момент времени оборудования. Выбросы загрязняющих веществ в атмосферный воздух при строительно-монтажных работах несут кратковременный характер. После окончания строительных работ воздействие прекратится, а показатель качества атмосферного воздуха не претерпит никаких изменений.

В качестве критерия для оценки уровня загрязнения атмосферного воздуха применялись значения максимально разовых предельно допустимых концентраций веществ в атмосферном

	Лист
00C	14

санитарно-гигиенических нормативов со	ПДК и ОБУВ приняты на основании действующих гласно приказа Министра национальной экономики 5 года «Об утверждении гигиенических нормативов к ких населенных пунктах».
1	яющих веществ, выбрасываемых в атмосферу от в таблице 3.2.1 Выбросы загрязняющих веществ от ваблице 3.2.2.
загрязняющих веществ в атмосферу (г/о	редных веществ, исходные данные по выбросам с) и валовые выбросы (т/год) от организованных и в при проведении строительно-монтажных работ
	Лист
	OOC 15

Перечень загрязняющих веществ, выбрасываемых в атмосферу в период проведения строительно-монтажных работ Таблица 3.2.1

Код 3В	Н а и м е н о в а н и е загрязняющего вещества	ЭНК, мг/м3	ПДК максималь- ная разо- вая, мг/мЗ	ПДК среднесу- точная, мг/мЗ	ОБУВ, мг/м3	Класс опас- ности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки,т/год (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в			0.04		3	0.04937	0.03492	0.873
	пересчете на железо) (диЖелезо								
	триоксид, Железа оксид) (274)								
	Марганец и его соединения (в		0.01	0.001		2	0.001588	0.0006995	0.6995
	пересчете на марганца (IV) оксид) (327)								
	Азота (IV) диоксид (Азота диоксид) (4)		0.2	0.04		2	6.645746666	5.0206954	125.517385
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	1.079934834	0.81586315	13.5977192
	Углерод (Сажа, Углерод черный) (583)		0.15	0.05		3	0.395472224	0.3007188	6.014376
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	1.182472222	0.8806725	17.61345
	Сернистый газ, Сера (IV) оксид) (516)								
	Сероводород (Дигидросульфид) (518)		0.008			2	0.0004246536	0.017621996	2.2027495
0337	Углерод оксид (Окись углерода,		5	3		4	5.330752222	4.0480654	1.34935513
	Угарный газ) (584)								
0342	Фтористые газообразные соединения		0.02	0.005		2	0.000904	0.0001953	0.03906
	/в пересчете на фтор/ (617)								
	Фториды неорганические плохо		0.2	0.03		2	0.000972	0.00021	0.007
	растворимые - (алюминия фторид,								
	кальция фторид, натрия								
	гексафторалюминат) (Фториды								
	неорганические плохо растворимые								
	/в пересчете на фтор/) (615)								
0415	Смесь углеводородов предельных				50		0.007902	0.0606784068	0.00121357
	C1-C5 (1502*)								
	Смесь углеводородов предельных				30		0.005268	0.0404522712	0.00134841
	C6-C10 (1503*)								
0616	Диметилбензол (смесь о-, м-, п-		0.2			3	0.208	0.094	0.47

	Лист
00	16

Перечень загрязняющих веществ, выбрасываемых в атмосферу в период проведения строительно-монтажных работ

1	2	3	4	5	6	7	8	9	10
	изомеров) (203)								
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0.000001		1	0.000010567	0.000008392	8.392
1325	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.101569444	0.0761388	7.61388
2735	Масло минеральное нефтяное (0.05		0.0000758	0.000073	0.00146
	веретенное, машинное, цилиндровое								
	и др.) (716*)								
	Уайт-спирит (1294*)				1		0.617		
2754	Алканы С12-19 /в пересчете на С/		1			4	2.5985706784	8.130783804	8.1307838
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2902	Взвешенные частицы (116)		0.5	0.15		3	0.0052	0.0144	0.096
2908	Пыль неорганическая, содержащая		0.3	0.1		3	6.627612	3.87751	38.7751
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
I I	углей казахстанских								
	месторождений) (494)								
	Пыль абразивная (Корунд белый,				0.04		0.0034	0.00942	0.2355
	Монокорунд) (1027*)								
	ВСЕГО:						24.862245311	24.79866872	233.006423

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ
2. Способ сортировки: по возрастанию кода 3В (колонка 1)

	Лист
000	17

Перечень загрязняющих веществ, выбрасываемых в атмосферу в период проведения испытания

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДК максималь- ная разо- вая, мг/мЗ	ПДК среднесу- точная, мг/м3	ОБУВ, мг/м3	Класс опас- ности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки,т/год (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
	Азота (IV) диоксид (Азота диоксид) (4)		0.2	0.04		2	1.777066667	5.54816	138.704
0304	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	0.288773333	0.901576	15.0262667
0328	Углерод (Сажа, Углерод черный) (583)		0.15	0.05		3	0.115694445	0.34676	6.9352
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0.5	0.05		3	0.277666667	0.8669	17.338
	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1.434611112	4.50788	1.50262667
	Бенз/а/пирен (3,4-Бензпирен) (54)			0.000001		1	0.000002777	0.000009536	9.536
	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.027766667	0.08669	8.669
2754	Алканы С12-19/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		1			4	0.671027779	2.08056	2.08056
	ВСЕГО:			·	·		4.592609447	14.338535536	199.791653

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ
2. Способ сортировки: по возрастанию кода 3В (колонка 1)

	Лист
OOC	18

Таблица 3.2.2. Выбросы загрязняющих веществ в атмосферный воздух от передвижных источников

Код загрязняющего вещества	Наименование загрязняющего вещества	Выброс вещества, г/с	Выброс вещества, т/год
301	Диоксид азота	0,10357	0,33652
328	Сажа	0,04562	0,37060
330	Диоксид серы	0,06120	0,48128
337	Углерода оксид	1,40989	3,85689
703	Бензапирен	0,0000013	0,00000819
2704	Углеводороды (бензин)	0,18710	0,24585
2732	Углеводороды (керосин)	0,08619	0,71454
	ИТОГО	1,89356	6,00568

ООС Лист 19 Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения строительно-монтажных работ

_																					тельно-монтажных раб				
		Источник выд	еления	Число	Наименование	Номер	Высо	Диа-		Параметры		Ko	ординат	ы источни	ика	Наименование	Вещество	Коэфф	Средняя	Код		Выброс за	грязняющего	вещества	
Пj		загрязняю ц веществ		часов	источника выброса	источ	та	метр	1	газовозд.смес ыходе из труб			на карт	е-схеме, м		газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
	в Цех	,		рабо-	вредных веществ	ника	источ	устья	мак	симальной ра	зовой					установок,	рому	газо-	степень	ще-	вещества				
од	c	Наименование	Коли-	ты		выбро		трубы	ı	нагрузке		точечног	го источ.	1	•	тип и	произво-	очист	очистки/	ства	ı	г/с	мг/нм3	т/год	Год
ТВ	D		чест-	В		СОВ	выбро	•				/1-го ког	•		ширина	мероприятия	дится	кой,	тах.степ						дос-
			во,	году			сов,	M	ско-	1		/центра				по сокращению	газо-	%	очистки%						тиже
			шт.				M		м/с	трубу, м3/с	пер. оС	ного ист			ника 🗆 🗆	выбросов	очистка								ния НДВ
1	2	3	4	5	6	7	8	9	10	11	12	X1 13	Y1 14	X2 15	Y2 16	17	18	19	20	21	22	23	24	25	26
00	1	Дизель-	l 1	792	Выхлопная труба	0001	3	0.16	Sl 41 55	0.8354123	450	период п 4998	роведен -1208	ия строит 	ельно-мо 	онтажных работ 	ı	I	I	10301	Азота (IV) диоксид (1.002666667	3178.567	0.691654	4l 2023
		генератор		,32	BBIAJIOIIII II I I I I I I I I I I I I I I I	0001		0.10	71.55	0.0054125	450	4330	1200								Азота диоксид) (4)				
		буровой установки TAD																			Азот (II) оксид (Азота оксид) (6)	0.162933333	516.517	0.1123938	4 2023
		1641GE Volvo																			Углерод (Сажа, Углерод черный) (583)	0.065277778	206.938	0.043228	4 2023
																				0330	Сера диоксид (0.156666667	496.651	0.10807	1 2023
																					Ангидрид сернистый, Сернистый газ, Сера (
																					IV) оксид) (516) Углерод оксид (Окись	0.809444444	2566.031	0.561969	2 2023
																					углерода, Угарный газ) (584)				
																					Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001567	0.005	0.00000118	9
																				1325	Формальдегид (Метаналь) (609)	0.015666667	49.665	0.010807	1
																				2754	Алканы С12-19 /в пересчете на С/ (0.378611111	1200.240	0.259370	4
																					Углеводороды предельные С12-С19 (в пересчете на С);				
																					Растворитель РПК- 265П) (10)				
00	1	Дизель- генератор	1	792	Выхлопная труба	0002	2.5	0.115	70.38	0.7310294	450	3853	-1208								Азота (IV) диоксид (Азота диоксид) (4)	1.002666667	3632.431	0.691654	4 2023
		буровой																		0304	Азот (II) оксид (0.162933333	590.270	0.1123938	4 2023
		установки TAD 1641GE Volvo (0328	Азота оксид) (6) Углерод (Сажа,	0.065277778	236.486	0.043228	4 2023
		резерв)																		0330	Углерод черный) (583) Сера диоксид (0.156666667	567.567	0.10807	1 2023
																					Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)				
																				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.809444444	2932.431	0.561969	2 2023
																				0703	Бенз/а/пирен (3,4-	0.000001567	0.006	0.00000118	9 2023
																				1325	Бензпирен) (54) Формальдегид (0.015666667	56.757	0.010807	1 2023
																					Метаналь) (609) Алканы С12-19 /в пересчете на С/ (0.378611111	1371.621	0.259370	4 2023
																					Углеводороды				
																					предельные C12-C19 (в пересчете на C);				
																					Растворитель РПК-				

	Лист
OOC	20

Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения строительно-монтажных работ

				Таблица 3.2.3.	. Парам	1етры 1	выброс		язняющих ве			ру для ра		мативов					строительно-монтажных раб				
1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26
																			265П) (10)				\Box
001	Буровая	1	792	Выхлопная труба	0003	2.5	0.13	78.67	1.0442049	450	-1870	-1208							0301 Азота (IV) диоксид (0.853333333	2164.256	0.86464	2023
	установка ZJ-	-					"												Азота диоксид) (4)				,
	30 (или																		0304 Азот (II) оксид (0.138666667	351.692	0.140504	12023
																				0.130000007	331.032	0.140304	2023
	аналог)																		Азота оксид) (6)	0.0555556	4.40.000	0.05.40.4	12022
																			0328 Углерод (Сажа,	0.05555556	140.902	0.05404	2023
																			Углерод черный) (583)				<i>i</i> 1
																			0330 Сера диоксид (0.133333333	338.165	0.1351	2023
																			Ангидрид сернистый,				ı I
																			Сернистый газ, Сера (, I
																			IV) оксид) (516)				, I
																			0337 Углерод оксид (Окись	0.688888889	1747.186	0.70252	12022
																				0.000000000	1/4/.100	0.70232	2023
																			углерода, Угарный				(l
																			газ) (584)				(l
																			0703 Бенз/а/пирен (3,4-	0.000001333	0.003	0.000001486	2023
																			Бензпирен) (54)				(l
																			1325 Формальдегид (0.013333333	33.816	0.01351	2023
																			Метаналь) (609)				(l
																			2754 Алканы С12-19 /в	0.32222222	817.232	0.32424	12023
																			пересчете на С/ (0.0222222	017.232	0.52.12.1	,
																							, I
																			Углеводороды				(l
																			предельные С12-С19 (в				(l
																			пересчете на С);				i I
																			Растворитель РПК-				(l
																			265II) (10)				(l
001	Цементировочны	1	792	Выхлопная труба	0004	2.5	0.13	78.67	1.0442641	450	2477	397							0301 Азота (IV) диоксид (0.853333333	2164.133	0.86464	2023
	й агрегат ЦА-			13															Азота диоксид) (4)				(l
	320																		0304 Азот (II) оксид (0.138666667	351.672	0.140504	12023
	320																		Азота оксид) (6)	0.130000007	331.072	0.140504	12023
																			1022017/ (С	0.0555556	140.004	0.05404	2022
																			0328 Углерод (Сажа,	0.05555556	140.894	0.05404	2023
																			Углерод черный) (583)				(l
																			0330 Сера диоксид (0.133333333	338.146	0.1351	2023
																			Ангидрид сернистый,				(l
																			Сернистый газ, Сера (i I
																			IV) оксид) (516)				i I
																			0337 Углерод оксид (Окись	0.688888889	1747.087	0.70252	2023
																			углерода, Угарный				(l
																			газ) (584)				(l
																				0.000001333	0.003	0.000001486	12023
																			0703 Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001333	0.005	0.000001400	12023
					1														1325 Формальдегид (0.013333333	33.815	0.01351	12023
					1														1323 Формальдегид (0.01333333	33.015	0.01351	2023
																			Метаналь) (609)	0.00000000	047400	0.00404	12022
																			2754 Алканы С12-19 /в	0.32222222	817.186	0.32424	2023
					1														пересчете на С/ (, I
					1														Углеводороды				, I
																			предельные С12-С19 (в				, I
																			пересчете на С);				, I
																			Растворитель РПК-				, I
					1														265II) (10)				, I
001	Цементно-	1	792	Выхлопная труба	0005	3	0.33	14.17	1.2119581	450	-803	-3249							0301 Азота (IV) диоксид (1.426133333	3116.364	0.877548	2023
	смесительная	1	,52				3.55	/	1.2110001	.55	000	35							Азота диоксид) (4)	10100000	2110.004	3.37 7 5 10	
	машина СМН-20																		0304 Азот (II) оксид (0.231746667	506.409	0.14260155	12022
	машина См11-20																			0.231/4000/	500.409	0.14200133	2023
																			Азота оксид) (6)	0.05405555	400.041	0.045011-	12022
					1														0328 Углерод (Сажа,	0.074277778	162.311	0.0470115	2023
					1														Углерод черный) (583)				(l
					1														0330 Сера диоксид (0.297111111	649.242	0.188046	2023
					1														Ангидрид сернистый,				, I
					1														Сернистый газ, Сера (, I
																		·					

	Лист
000	21

1	2 3	4	5	Та олиц 6	ца э.2.3	7 11apa	метры 8	выор	10	грязняющих в 11	12	<u>з атмосф</u> 13	еру для <u>ј</u> 14	15	нормати 16	устимых вы 17	18	19	20	я строительно-монтажных ра 21 22	23	24	25	26
									10	- 11		-10		15	1		10	10		IV) оксид) (516)				
																				0337 Углерод оксид (Окись углерода, Угарный	1.124777778	2457.847	0.689502	2023
																				газ) (584) 0703 Бенз/а/пирен (3,4-	0.000002334	0.005	0.00000141	2023
																				Бензпирен) (54) 1325 Формальдегид (0.021222222	46.374	0.0125364	2023
																				Метаналь) (609) 2754 Алканы С12-19 /в пересчете на С/ (0.509333333	1112.987	0.31341	2023
																				Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)				
001	Насос буровой F-1000 - 2шт.	2	1584	Выхлопная тј	руба	0006	3	0.33	14.17	1.2115697	450	4997	-1208							0333 Сероводород (Дигидросульфид) (518)	0.00020216	0.442	0.0005768	
	1 -1000 - 2m1.																			2754 Алканы С12-19 /в пересчете на С/ (0.07199784	157.379	0.2054232	2023
																				Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-				
001	Буровой насос	2	1584	Выхлопная тј	руба	0008	3	0.33	14.17	1.2115697	450	4997	-1208							265П) (10) 0333 Сероводород (0.00020216	0.442	0.0005768	
	- 2шт.																			Дигидросульфид) (518) 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.07199784	157.379	0.2054232	2023
																				пересчете на С); Растворитель РПК- 265П) (10)				
001	Дизельные двигатели	1	792	Выхлопная тр	руба	0010	2	0.5	0.27	0.0530144	450	-1868	-1208							0301 Азота (IV) диоксид (Азота диоксид) (4)	0.0206	1029.080	0.0464744	2023
	насоса Chidong G12V190PZL1																			0304 Азот (II) оксид (Азота оксид) (6)	0.0033475	167.225	0.00755209	
																				0328 Углерод (Сажа, Углерод черный) (583)	0.00175	87.422	0.004053	2023
																				0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00275	137.377	0.0060795	2023
																				0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.018	899.196	0.04053	2023
																				0703 Бенз/а/пирен (3,4- Бензпирен) (54)	3.3e-8	0.002	7.4e-8	2023
																				1325 Формальдегид (Метаналь) (609)	0.000375	18.733	0.0008106	2023
																				2754 Алканы С12-19 /в пересчете на С/ (0.009	449.598	0.020265	2023
																				Углеводороды предельные С12-С19 (в				
																				пересчете на С); Растворитель РПК-				
001	Дизельные	1	792	! Выхлопная т	руба	0011	2	0.5	0.27	0.0530144	450	-1868	-1208							265П) (10) 0301 Азота (IV) диоксид (0.0206	1029.080	0.0464744	

	Лист
OOC	22

1 2	2 3	4	5	Таолица 3.2. 6	.3. Hapa	метры ₈	выоро	сов загј 10	рязняющих в 11	зеществ 12	в атмос ф	реру для 14	расчета 15	норматив 16	ов допуст 	гимых выбр 17	18	гриод пр 19	оведения 20	строит 21	г ельно-монтажных раб 22	от 23	24	25	26
1 1	двигатели насоса Chidong	-	3	0	/	0	<i>J</i>	10	11	12	13	14	13	10	1	17	10	15		Α	Азота диоксид) (4) Азот (II) оксид (0.0033475	167.225	0.00755209	
	G12V190PZL1																			A	Азота оксид) (6) Углерод (Сажа,	0.00175	87.422	0.004053	
																				У	Углерод (Сажа, Углерод черный) (583) Сера диоксид (0.00173	137.377	0.004033	
																				A	лера диоксид (Ангидрид сернистый, Сернистый газ, Сера (V) оксид) (516)	0.00273	137.377	0.0000793	
																				0337 y	√глерод оксид (Окись гглерода, Угарный аз) (584)	0.018	899.196	0.04053	
																				0703 Б	Бенз/а/пирен (3,4- Бензпирен) (54)	3.3e-8	0.002	7.4e-8	ı
																				1325 ₫	Рормальдегид (Метаналь) (609)	0.000375	18.733	0.0008106	,
																				2754 A	Алканы C12-19 /в	0.009	449.598	0.020265	,
																				у п п Р	пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 165П) (10)				
001	Резервуар для дизельного	1	792	Резервуар для дизельного	0012	3	0.5	2	0.3926991	450	2377	397								0333 C	Сероводород (Цигидросульфид) (518)	0.0000182	0.123	0.016464	
	топлива			топлива																2754 A	Алканы С12-19 /в нересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0.0064818	43.713	5.863536	
001	ппу	1	96	Выхлопная труба	0013	2	0.5	1.74	0.3416482	450	3952	2 -1206								0301 A	Растворитель РПК- 265П) (10) Азота (IV) диоксид (0.0206	159.685	0.0464744	,
																				0304 A	Азота диоксид) (4) Азот (II) оксид (0.0033475	25.949	0.00755209	,
																				0328 У	Азота оксид) (6) Углерод (Сажа,	0.00175	13.565	0.004053	, ,
																				0330 C	Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.00275	21.317	0.0060795	
																				0337 Σ y	V) оксид) (516) Углерод оксид (Окись тлерода, Угарный	0.018	139.530	0.04053	
																				0703 Б	аз) (584) Бенз/а/пирен (3,4-	3.3e-8	0.0003	7.4e-8	,
																				1325 ₫	Бензпирен) (54) Рормальдегид (0.000375	2.907	0.0008106	,
																				2754 A	Иетаналь) (609) Алканы С12-19 /в пересчете на С/ (0.009	69.765	0.020265	,
																				У п п Р	Углеводороды предельные С12-С19 (в пресчете на С); Растворитель РПК-				
001	Дизельные двигатели САТ	1	792	Выхлопная труба	0014	3	0.33	14.17	1.2119581	450	-803	3 -3249								0301 A	65П) (10) Азота (IV) диоксид (Азота диоксид) (4)	1.426133333	3116.364	0.877548	j

	Лист
OOC	23

1	1 2	1 2		_		3. Пара	метры									вов допус					строительно-монтажных ра		24	25	<u> </u>
	2	3 3408B	4	5	6	1 /	B	9	10	11	12	13	14	15	16	+	17	18	19	20	21 22 0304 Азот (II) оксид (23 0.231746667	24 506.409	25 0.14260155	26
		34000																			Азота оксид) (6)	0.231/4000/	300.409	0.14200133	
																					0328 Углерод (Сажа,	0.074277778	162.311	0.0470115	
																					Углерод черный) (583)				
																					0330 Сера диоксид (0.297111111	649.242	0.188046	
																					Ангидрид сернистый,				
																					Сернистый газ, Сера (
																					IV) оксид) (516) 0337 Углерод оксид (Окись	1.124777778	2457.847	0.689502	
																					углерода, Угарный	1.124////0	2437.047	0.009302	
																					газ) (584)				
																					0703 Бенз/а/пирен (3,4-	0.000002334	0.005	0.00000141	
																					Бензпирен) (54)				
																					1325 Формальдегид (0.021222222	46.374	0.0125364	
																					Метаналь) (609)	0.50022222	1112.007	0.21241	
																					2754 Алканы С12-19 /в пересчете на С/ (0.509333333	1112.987	0.31341	
																					Углеводороды				
																					предельные С12-С19 (в				
																					пересчете на С);				
																					Растворитель РПК-				
00	.1	Пя		702	 Неорганизованный	C001	,				30	002	-3251		3 6						265П) (10) 0415 Смесь углеводородов	0.007902		0.0606784068	2022
100	'1	Линия дизтоплива	1		выброс	10001	-				30	-003	-3231		3 0						предельных С1-С5 (0.007902		0.0000/04000	2023
		дизтоплива			Выорос																1502*)				
																					0416 Смесь углеводородов	0.005268		0.0404522712	2023
																					предельных С6-С10 (
																					1503*)				
00	1	Перемещения	1		Неорганизованный	6002	1					0	()	1 2						2908 Пыль неорганическая,	2.4		0.7776	2023
		грунта			выброс																содержащая двуокись кремния в %: 70-20 (
		бульдозером																			шамот, цемент, пыль				
																					цементного				
																					производства - глина,				
																					глинистый сланец,				
																					доменный шлак, песок,				
																					клинкер, зола, кремнезем, зола углей				
																					казахстанских				
																					месторождений) (494)				
00	1	Засыпка грунта	1		Неорганизованный	6003	1					0	(1 2						2908 Пыль неорганическая,	2.667		0.922	2023
		бульдозером			выброс																содержащая двуокись				
																					кремния в %: 70-20 (
																					шамот, цемент, пыль цементного				
																					производства - глина,				
																					глинистый сланец,				
																					доменный шлак, песок,				
																					клинкер, зола,				
																					кремнезем, зола углей				
																					казахстанских месторождений) (494)				
00	1	Уплотнение	1	90	 Неорганизованный	6004	1					n	(1 2						2908 Пыль неорганическая,	0.0699		0.02265	2023
	-	грунта катками			выброс		1						`		1						содержащая двуокись	0.0055		0.02200	-525
		и трамбовками																			кремния в %: 70-20 (
																					шамот, цемент, пыль				
																					цементного				
		1	I l		I	1	1	1	1	I	ı l		1	1	- 1	- 1		1	1		производства - глина,	1			- 1

	Лист
OOC	24

Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения строительно-монтажных работ

				Таблица 3.2.3	3. Пара	метры		осов заг												ительно-монтажных раб				
1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
																				глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола,				
																				кремнезем, зола углей				
																				казахстанских				
						.					_	_		. _						месторождений) (494)				
001	Пыление при	1	90	Неорганизованный	6005	1					0	0) 1	L 2					2908	Пыль неорганическая,	0.0699		0.02265	2023
	передвижении			выброс																содержащая двуокись				
	автотранспорта																			кремния в %: 70-20 (
																				шамот, цемент, пыль				
																				цементного				
																				производства - глина, глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола,				
																				кремнезем, зола углей				
																				казахстанских				
																				месторождений) (494)				
001	Пылящая	3	270	Неорганизованный	6006	1					0	1 0) 1	12					2908	В Пыль неорганическая,	0.4		0.389	2023
**-	поверхность			выброс							_									содержащая двуокись	-		0.000	
	бурильные			1																кремния в %: 70-20 (
	работы																			шамот, цемент, пыль				
																				цементного				
																				производства - глина,				
																				глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола,				
																				кремнезем, зола углей				
																				казахстанских				
																				месторождений) (494)				
001	Узел пересыпки	1	90	Неорганизованный	6007	2					0	0] 2	2 2					2908	Пыль неорганическая,	1.011		0.3494	2023
	грунта			выброс																содержащая двуокись				
																				кремния в %: 70-20 (
																				шамот, цемент, пыль				
																				цементного				
																				производства - глина, глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола,				
																				кремнезем, зола углей				
																				казахстанских				
																				месторождений) (494)				
001	Сварочные	1	247.	Неорганизованный	6008	2					0	0) 2	2 2					0123	В Железо (II, III)	0.01351		0.00292	2023
	работы		64	выбросы																оксиды (в пересчете				
																				на железо) (диЖелезо				
																				триоксид, Железа				
																				оксид) (274)				
																			0143	В Марганец и его	0.00106		0.000229	2023
																				соединения (в				
																				пересчете на марганца				
																			0201	(IV) оксид) (327)	0.0001		0.0004=4	2022
																			0301	Азота (IV) диоксид (0.0021		0.000454	2023
																			0204	Азота диоксид) (4) Азот (II) оксид (0.0003.44		0.0000737	, ,,,,,,,
																			0304	Азот (II) оксид (Азота оксид) (6)	0.000341		0.0000737	2023
																			0337	Азота оксид) (6) Углерод оксид (Окись	0.01293		0.002793	2022
																			033/	углерод оксид (Окись углерода, Угарный	0.01293		0.002/93	2023
																				газ) (584)				
\Box			<u> </u>	I	L			I	I			l .	I	1	l	1	1		1	[1 a3] (30 4]		<u> </u>		1

	Лист
OOC	25

				Таблица 3.2.	3. Папа	эметпы	і выбо	OCOR 321	ะท ส รหสพแเห ง เ	REIIIECTR	в атмосф	епу лля і	расчета н	ормативої	з лопустимых вы	бросов в п	епиол п	повеления	g CTDO	ительно-монтажных рабо	ìт			
1	2 3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	19	роведении 20	21	22	23	24	25	26
					,			10		12	13	11	15		1/	10	13	20		Фтористые газообразные соединения /в пересчете на фтор/ (0.000904	2-7	0.0001953 2	
																			0344	617) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (0.000972		0.00021 2	<u>'</u> .023
																			2908	Фториды неорганические плохо растворимые /в пересчете на фтор/) (615) Пыль неорганическая, содержащая двуокись	0.000972		0.00021 2	2023
																				кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)				
001	Газовая резка		1 247. 64	Неорганизованный выброс	6009	2					0	C	:	2 2					0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.03586		0.032 2	:023
																				Марганец и его соединения (в пересчете на марганца (IV) оксид) (327) Азота (IV) диоксид (0.000528		0.0004705 2	
																				Азота диоксид) (4) Азот (II) оксид (0.002315		0.002064 2	
																			0337	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584)	0.0176		0.0157	2023
001	Пропано- бутановая		1 7	92 Неорганизованный выброс	6010	2					0	C	:	2 2						Азота (IV) диоксид (Азота диоксид) (4)	0.00334		0.0004334 2	
001	сварка Покрасочные работы		1 7	92 Неорганизованный выброс	6011	2	!				0	C	:	2 2						Азот (II) оксид (Азота оксид) (6) Диметилбензол (смесь о-, м-, п- изомеров)	0.000543		0.0000704 2	
001	Шлифовальнь станок	й	1 153	3.9 Неорганизованный выброс	6012	2	!				0	C	:	2 2						(203) Уайт-спирит (1294*) Взвешенные частицы (116)	0.617 0.0052		1.375542 2 0.0144 2	2023 2023
																			2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0034		0.00942 2	.023

	Лист
OOC	26

Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения строительно-монтажных работ

1	2	3	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001	ŀ	Емкость для отработанного масла - 6м3	1	792 Неорганизованный выброс	6013	2					0	0	2	2 2						Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0.0000758		0.000073	
001	- 1	Емкость для диз. топлива	2	1584 Неорганизованный выброс	6014	2					0	0	2	2					0333	Сероводород (Дигидросульфид) (518)	0.000002133		0.000004396	
	1	34 м3 - 2шт.																	2754	Алканы С12-19/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0.000759866		0.001565604	
001]	Устройство насыпи из щебня под буровую площадку	1	792 Неорганизованный выброс	6016	2					0	0	2	. 2					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.00884		1.394	

	Лист
OOC	27

Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения испытания

	_	77		TT.							цил в					омативов допуст						D .			
		Источник выдел	тения	Число	Наименование	Номер	Высо	Диа-		Параметры азовозд.смеси		Ko	рдинаті	ы источник	ka	Наименование	Вещество	Коэфф	Средняя	Код		Выброс заг	рязняющег	о вещества	
Пр	0	загрязняющих ве	еществ	часов	источника выброса	источ	та	метр		ходе из трубь			на карте	-схеме, м		газоочистных	по кото-	обесп	эксплуат	ве-	Наименование				
изв	з Цех				вредных веществ	1		-		имальной раз	овой					установок,	рому	газо-	степень	ще-	вещества]]
одо		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точеч		2-го конц	а лин.	тип и	произво-	очист	очистки/	ства		г/с	мг/нм3	т/год	Год
TBO			чест-	В		сов	выбро					ı	оч. ша лин.	 /длина, ш	ирина	мероприятия	дится	кой,	тах.степ						дос-
			во,	году			сов,	M	ско-	объем на 1	тем-	/центра			^ I	по сокращению	газо-	%	очистки%						тиже
			шт.				М			трубу, м3/с	_	ного ист	очника	источн	ика	выбросов	очистка								ния
									M/C		оC	X1	Y1	X2	Y2										ндв
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	٠.	l-		1 4500	ln -	lana	ا ما	0.0	ابدمدا	==0000=1	450			роведения	испыт	ания	ı	1	1	Lana	l. m		4400 0001	4.450	مممم ا
00	1	Буровая установка ZJ-	1	1533. 6	Выхлапная труба	0001	2	0.2	18.14	0.5700225	450	4999	-1207								Азота (IV) диоксид (Азота диоксид) (4)	0.256			2 2023
		30 (или аналог)																		0304	Азот (II) оксид (Азота оксид) (6)	0.0416	193.276	0.1872	2 2023
																				0328	Углерод (Сажа, Углерод черный) (583)	0.016666667	77.434	0.072	2 2023
																				0330	Сера диоксид (0.04	185.842	0.18	3 2023
																					Ангидрид сернистый, Сернистый газ, Сера (
																					IV) оксид) (516)				
																				0337	Углерод оксид (Окись	0.206666667	960.183	0.936	5 2023
																					углерода, Угарный газ) (584)				
																				0703	Бенз/а/пирен (3,4-	0.0000004	0.002	0.00000198	3 2023
																				1325	Бензпирен) (54) Формальдегид (0.004	18.584	0.018	3 2023
																					Метаналь) (609)				
																				2754	Алканы С12-19 /в пересчете на С/ (0.096666667	449.118	0.432	2 2023
																					Углеводороды				
																					предельные С12-С19 (в				
																					пересчете на С); Растворитель РПК-				
																					265Π) (10)				
00	1	Цементировочны	1	1533.	Выхлапная труба	0002	2	0.2	18.14	0.5700225	450	4799	-1205							0301	Азота (IV) диоксид (0.256	1189.388	1.152	2 2023
		й агрегат ЦА- 320		6																0304	Азота диоксид) (4) Азот (II) оксид (0.0416	193.276	0 1872	2 2023
		320																			Азота оксид) (6)		100.270		
																				0328	Углерод (Сажа,	0.016666667	77.434	0.072	2 2023
																				0330	Углерод черный) (583) Сера диоксид (0.04	185.842	0.18	3 2023
																				0550	Ангидрид сернистый,	0.01	100.012	0.10	2023
																					Сернистый газ, Сера (
																				0337	IV) оксид) (516) Углерод оксид (Окись	0.206666667	960.183	0.936	5 2023
																					углерода, Угарный	0.20000007	300,103	0,000	
																				0702	газ) (584) Бенз/а/пирен (3,4-	0.0000004	0.002	0.00000198	2022
																				0/03	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000004	0.002	0.00000198	2023
																				1325	Формальдегид (Метаналь) (609)	0.004	18.584	0.018	3 2023
																				2754	Алканы С12-19 /в	0.096666667	449.118	0.432	2 2023
																					пересч. на С/ (Углевод ороды предельные С12				
																					-С19 (в пересчете на С)				
																					Растворитель РПК-				

ООС 28

Таблица 3.2.3. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов в период проведения испытания

1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25 20
001	Дизельный			Выхлопная труба	0003	2	0.3	11	0.7775442	450		-1207					20		265П) (10) 0301 Азота (IV) диоксид (0.548266667	1867.422	1.62208 203
	генератор		b																Азота диоксид) (4) 0304 Азот (II) оксид (Азота оксид) (6)	0.089093333	303.456	0.263588 20
																			0328 Углерод (Сажа, Углерод черный) (583)	0.035694444	121.577	0.10138 203
																			0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.085666667	291.785	0.25345 203
																			IV) оксид) (516) 0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.442611111	1507.554	1.31794 20
																			0703 Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000857	0.003	0.000002788 203
																			1325 Формальдегид (Метаналь) (609)	0.008566667	29.178	0.025345 203
																			2754 Алканы С12-19 /в пересчете на С/ (0.207027778	705.146	0.60828 203
																			Углеводороды предельные C12-C19 (в пересчете на C);			
																			Растворитель РПК- 265П) (10)			
001	Силовой привод буровой	1	1533. 6	Выхлопная труба	0004	2	0.3	16	1.1309734	450	4697	-1206							0301 Азота (IV) диоксид (Азота диоксид) (4)	0.7168	1678.500	1.62208 203
	установки																		0304 Азот (II) оксид (Азота оксид) (6)	0.11648	272.756	0.263588 203
																			0328 Углерод (Сажа, Углерод черный) (583)	0.04666667	109.277	0.10138 203
																			0330 Сера диоксид (Ангидрид сернистый,	0.112	262.266	0.25345 203
																			Сернистый газ, Сера (IV) оксид) (516)			
																			0337 Углерод оксид (Окись углерода, Угарный	0.578666667	1355.039	1.31794 20
																			газ) (584) 0703 Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000112	0.003	0.000002788 203
																			1325 Формальдегид (Метаналь) (609)	0.0112	26.227	0.025345 203
																			2754 Алканы С12-19 /в пересчете на С/ (0.270666667	633.808	0.60828 203
																			Углеводороды предельные С12-С19 (в			
																			пересчете на С); Растворитель РПК-			
																			265Π) (10)			

•		
		Лист
	000	29

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Наименование производства номер цеха,	Номер источ- ника загряз	Номер источ- ника выде-	Наименование источника выделения загрязняющих	Наименование выпускаемой продукции	источ	работы ника ния,час	Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
участка	нения	ления	веществ		В	3a		наименование	от источника
	атм-ры				сутки	год			выделения,
									т/год
Α	1	2	3	4	5	6	7	8	9
	_	_	В	период проведени	ия строите.	льно-монт	ажных работ		
(001) При	0001	0001 01	Дизель-	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.6916544
строительно-			генератор				диоксид) (4)		
монтажных			буровой				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.11239384
работах (СМР)			установки TAD				Углерод (Сажа, Углерод черный)	0328(583)	0.0432284
			1641GE Volvo				Сера диоксид (Ангидрид	0330(516)	0.108071
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись углерода,	0337(584)	0.5619692
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000001189

	Лист
OOC	30

A	1	2	3	4	5	6	7	8	9
							Формальдегид (Метаналь) (609)	1325(609)	0.0108071
							Алканы С12-19 /в пересчете	2754(10)	0.2593704
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0002	0002 01	Дизель-	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.6916544
			генератор				диоксид) (4)		
			буровой				Азот (II) оксид (Азота	0304(6)	0.11239384
			установки TAD				оксид) (6)		
			1641GE Volvo (Углерод (Сажа, Углерод	0328(583)	0.0432284
			резерв)				черный) (583)		
							Сера диоксид (Ангидрид	0330(516)	0.108071
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.5619692
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000001189
							Формальдегид (Метаналь) (609)	1325(609)	0.0108071
							Алканы С12-19 /в пересчете	2754(10)	0.2593704
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0003	0003 01	Буровая	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.86464
			установка ZJ-30				диоксид) (4)		
			(или аналог)				Азот (II) оксид (Азота	0304(6)	0.140504
							оксид) (6)		
							Углерод (Сажа, Углерод	0328(583)	0.05404
							черный) (583)		
							Сера диоксид (Ангидрид	0330(516)	0.1351

l l		1
		Лист
	OOC	31

A	1	2	3	4	5	6	7	8	9
							сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись	0337(584)	0.70252
							углерода, Угарный газ) (584) Бенз/а/пирен (3,4-	0703(54)	0.000001486
							Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете	1325(609) 2754(10)	0.01351 0.32424
							на С/ (Углеводороды предельные С12-С19 (в пересчете на С);		
	0004	0004 01	Цементировочный агрегат ЦА-320	д/т		792	Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.86464
							Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583)	0304(6) 0328(583)	0.140504 0.05404
							Сера диокси́д (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330(516)	0.1351
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337(584)	0.70252
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000001486
							Формальдегид (Метаналь) (609)	1325(609)	0.01351
							Алканы С12-19 /в пересчете на С/ (Углеводороды	2754(10)	0.32424
							предельные С12-С19 (в пересчете на С);		
							Растворитель РПК-265П) (10)		

	Лист
OOC	32

A	1	2	3	4	5	6	7	8	9
	0005	0005 01	Цементно-	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.877548
			смесительная				диоксид) (4)		
			машина СМН-20				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.14260155
							Углерод (Сажа, Углерод черный) (583)	0328(583)	0.0470115
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330(516)	0.188046
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337(584)	0.689502
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.00000141
							Формальдегид (Метаналь) (609)	1325(609)	0.0125364
							Алканы С12-19 /в пересчете	2754(10)	0.31341
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0006	0006 01	Насос буровой	д/т		1584	Сероводород (0333(518)	0.0005768
			F-1000 - 2шт.				Дигидросульфид) (518)		
							Алканы С12-19 /в пересчете	2754(10)	0.2054232
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	8000	0008 01	Буровой насос -	д/т		1584	Сероводород (0333(518)	0.0005768
			2шт.				Дигидросульфид) (518)		
							Алканы С12-19 /в пересчете	2754(10)	0.2054232
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		

	Лист
OOC	33

A	1	2	3	<u>4</u>	5	6	7	8	9
	0010	0010 01	Дизельные	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.0464744
			двигатели				диоксид) (4)		
			насоса Chidong				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.00755209
			G12V190PZL1				Углерод (Сажа, Углерод черный) (583)	0328(583)	0.004053
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330(516)	0.0060795
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.04053
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4-	0703(54)	0.000000074
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325(609)	0.0008106
							Алканы С12-19 /в пересчете	2754(10)	0.020265
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0011	0011 01	Дизельные	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.0464744
			двигатели				диоксид) (4)		
			насоса Chidong G12V190PZL1				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.00755209
							Углерод (Сажа, Углерод черный) (583)	0328(583)	0.004053
							Сера диоксид (Ангидрид	0330(516)	0.0060795
							сернистый, Сернистый газ,	, ,	
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.04053
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4-	0703(54)	0.000000074
							Бензпирен) (54)		

I		Пиот
		Лист
	OOC	34

A	1	2	3	4	5	6	7	8	9
							Формальдегид (Метаналь) (609)	1325(609)	0.0008106
							Алканы С12-19 /в пересчете	2754(10)	0.020265
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0012	0012 01	Резервуар для	д/т		792	Сероводород (0333(518)	0.016464
			дизельного				Дигидросульфид) (518)		
			топлива				Алканы С12-19 /в пересчете	2754(10)	5.863536
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0013	0013 01	ППУ	д/т		96	Азота (IV) диоксид (Азота	0301(4)	0.0464744
							диоксид) (4)		
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.00755209
							Углерод (Сажа, Углерод	0328(583)	0.004053
							черный) (583)		
							Сера диоксид (Ангидрид	0330(516)	0.0060795
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.04053
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4-	0703(54)	0.000000074
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325(609)	0.0008106
							Алканы С12-19 /в пересчете	2754(10)	0.020265
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		

	Лист
OOC	35

A	1	2	3	4	5	6	7	8	9
	0014	0014 01	Дизельные	д/т		792	Азота (IV) диоксид (Азота	0301(4)	0.877548
			двигатели САТ				диоксид) (4)		
			3408B				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.14260155
							Углерод (Сажа, Углерод	0328(583)	0.0470115
							черный) (583)		
							Сера диоксид (Ангидрид	0330(516)	0.188046
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.689502
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4-	0703(54)	0.00000141
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325(609)	0.0125364
							Алканы С12-19 /в пересчете	2754(10)	0.31341
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
	6001	6001 01	Линия			700	Растворитель РПК-265П) (10)	0.415(1500*)	0.000704000
	0001	6001 01	линия дизтоплива	зра		/92	Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.0606784068
			дизтоплива				Смесь углеводородов	0416(1503*)	0.0404522712
							предельных С6-С10 (1503*)	0410(1303)	0.0404322712
	6002	6002 01	Перемещения	ПЫЛЬ		90	Пыль неорганическая,	2908(494)	0.7776
	0002	0002 01	грунта	TIDIJID			содержащая двуокись	2500(454)	0.7770
			бульдозером				кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		

OOC 36

A	1	2	3	4	5	6	7	8	9
	6003	6003 01	Засыпка грунта	пыль		90	Пыль неорганическая, содержащая	2908(494)	0.922
			бульдозером				двуокись кремния в %: 70-20		
							(шамот, цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей казахстанских		
		200404				0.0	месторождений) (494)	2000(40.4)	0.000.05
	6004	6004 01	Уплотнение	ПЫЛЬ		90	Пыль неорганическая, содержащая	2908(494)	0.02265
			грунта катками				двуокись кремния в %: 70-20		
			и трамбовками				(шамот, цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный шлак,		
							песок, клинкер, зола, кремнезем, зола углей казахстанских		
							месторождений) (494)		
	6005	6005 01	Пыление при	ПЫЛЬ		90	Пыль неорганическая,	2908(494)	0.02265
	10003	0005 01	передвижении	TIBIJIB		50	содержащая двуокись	2500(454)	0.02203
			автотранспорта				кремния в %: 70-20 (шамот,		
			автогранспорта				цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный шлак,		
							песок, клинкер, зола, кремнезем,		
							зола углей казахстанских		
							месторождений) (494)		
	6006	6006 01	Пылящая	пыль		270	Пыль неорганическая, содержащая	2908(494)	0.389
			поверхность				двуокись кремния в %: 70-20		
			бурильные работы				(шамот, цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
			<u></u>	<u> </u>			кремнезем,		

	Лист
OOC	37

A	1	2	3	4	5	6	7	8	9
							зола углей казахстанских месторождений) (494)		
	6007	6007 01	Узел пересыпки	ПЫЛЬ		90	Пыль неорганическая,	2908(494)	0.3494
			грунта				содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6008	6008 01	Сварочные			247.64	Железо (II, III) оксиды (в	0123(274)	0.00292
			работы				пересчете на железо) (
							диЖелезо триоксид, Железа		
							оксид) (274)		
							Марганец и его соединения	0143(327)	0.000229
							(в пересчете на марганца (
							IV) оксид) (327)		
							Азота (IV) диоксид (Азота диоксид)	0301(4)	0.000454
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0000737
							Углерод оксид (Окись	0337(584)	0.002793
							углерода, Угарный газ) (584)		
							Фтористые газообразные	0342(617)	0.0001953
							соединения /в пересчете на фтор/	, ,	
							Фториды неорганические	0344(615)	0.00021
							плохо растворимые - (, ,	
							алюминия фторид, кальция		
							фторид, натрия		
							гексафторалюминат) (
							Фториды неорганические		
							плохо растворимые /в		

ООС 38

A	1	2	3	4	5	6	7	8	9
							пересчете на фтор/) (615)		
							Пыль неорганическая,	2908(494)	0.00021
							содержащая двуокись		
							кремния в %: 70-20 (шамот, цемент,		
							пыль цементного производства -		
							глина, глинистый сланец,		
							доменный шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6009	6009 01	Газовая резка			247.64		0123(274)	0.032
			_				на железо) (диЖелезо триоксид,		
							Железа оксид) (274)		
							Марганец и его соединения	0143(327)	0.0004705
							(в пересчете на марганца (
							IV) оксид) (327)		
							Азота (IV) диоксид (Азота диоксид)	0301(4)	0.0127
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.002064
							Углерод оксид (Окись	0337(584)	0.0157
							углерода, Угарный газ) (584)		
	6010	6010 01	Пропано-			792	Азота (IV) диоксид (Азота	0301(4)	0.0004334
			бутановая				диоксид) (4)		
			сварка				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0000704
	6011	6011 01	Покрасочные			792	Диметилбензол (смесь о-,	0616(203)	0.094
			работы				м-, п- изомеров) (203)		
							Уайт-спирит (1294*)	2752(1294*)	1.375542
	6012	6012 01	Шлифовальный			153.9	Взвешенные частицы (116)	2902(116)	0.0144
			станок				Пыль абразивная (Корунд	2930(1027*)	0.00942
							белый, Монокорунд) (1027*)		
	6013	6013 01	Емкость для	масло		792	Масло минеральное нефтяное	2735(716*)	0.000073
			отработанного				(веретенное, машинное,		

	Лист
OOC	39

A	1	2	3	4	5	6	7	8	9
			масла - 6м3				цилиндровое и др.) (716*)		
	6014	6014 01	Емкость для	д/т		1584	Сероводород (0333(518)	0.000004396
			диз. топлива 34				Дигидросульфид) (518)		
			м3 - 2шт.				Алканы С12-19 /в пересчете	2754(10)	0.001565604
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6016	6016 01	Устройство	щебень		792	Пыль неорганическая,	2908(494)	1.394
			насыпи из щебня				содержащая двуокись		
			под буровую				кремния в %: 70-20 (шамот,		
			площадку				цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		

Примечание: В графе 8 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

	Лист
OOC	40

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

2. Характеристика источников загрязнения атмосферного воздуха в период проведения строительно-монтажных работ

ника	ч источн.загрязнен. ка		Параме на	тры газовоздушной выходе источника за	смеси	Код загряз-	период проведения строительно-мон	Количество за веществ, выбр в атмо	расываемых		
заг-	Высота	Диаметр,	Скорость	Объемный	Темпе-	(ЭНК, ПДК	Наименование ЗВ				
ряз-	М	размер	м/с	расход,	ратура,	или ОБУВ)		Максимальное,	Суммарное,		
нения		сечения		м3/с	C			г/с	т/год		
		устья, м									
1	2	3	4	5	6	7	7a	8	9		
	В период проведения строительно-монтажных работ										
0001	3	0.16	41.55	0.8354123	450	0301 (4)	Азота (IV) диоксид (Азота	1.002666667	0.6916544		
							диоксид) (4)				
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.162933333	0.11239384		
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.065277778	0.0432284		
						0330 (516)	Сера диоксид (Ангидрид	0.156666667	0.108071		
							сернистый, Сернистый газ, Сера (IV) оксид) (516)				
						0337 (584)	Углерод оксид (Окись	0.809444444	0.5619692		
						(304)	углерода, Угарный газ) (0.00344444	0.3013032		
							584)				
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001567	0.000001189		
						1325 (609)	Формальдегид (Метаналь) (609)	0.015666667	0.0108071		
						2754 (10)	Алканы С12-19 /в пересчете	0.378611111	0.2593704		
						. ,	на С/ (Углеводороды				
							предельные С12-С19 (в				
							пересчете на С);				
							Растворитель РПК-265П) (10)				
0002	2.5	0.115	70.38	0.7310294	450	0301 (4)	Азота (IV) диоксид (Азота	1.002666667	0.6916544		
							диоксид) (4)				
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.162933333	0.11239384		

	Лист
OOC	41

1	2	3	4	5	6	7	но-монтажных расот 7а	8	9
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.065277778	0.0432284
						0330 (516)	Сера диоксид (Ангидрид	0.156666667	0.108071
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.809444444	0.5619692
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001567	0.000001189
						1325 (609)	Формальдегид (Метаналь) (609)	0.015666667	0.0108071
						2754 (10)	Алканы С12-19 /в пересчете	0.378611111	0.2593704
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
0000	2.5	0.12	70.67	1.0442040	450	0201 (4)	Растворитель РПК-265П) (10)	0.05222222	0.00464
0003	2.5	0.13	78.67	1.0442049	450	0301 (4)	Азота (IV) диоксид (Азота	0.853333333	0.86464
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.138666667	0.140504
						0304 (6)	Азот (п) оксид (Азота оксид) (6)	0.13000000/	0.140504
						0328 (583)	Углерод (Сажа, Углерод	0.05555556	0.05404
						0320 (303)	черный) (583)	0.05555555	0.05-0-1
						0330 (516)	Сера диоксид (Ангидрид	0.133333333	0.1351
						0550 (510)	сернистый, Сернистый газ,	0.15555555	0.1551
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.688888889	0.70252
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.000001333	0.000001486
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (609)	0.013333333	0.01351
						2754 (10)	Алканы С12-19 /в пересчете	0.322222222	0.32424
							на С/ (Углеводороды		
							предельные С12-С19 (в		

	Лист
OOC	42

1	2	3	4	5	6	7	7а	8	9
							пересчете на С); Растворитель РПК-265П) (10)		
0004	2.5	0.13	78.67	1.0442641	450	0301 (4)	Азота (IV) диоксид (Азота диоксид)	0.853333333	0.86464
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.138666667	0.140504
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.05555556	0.05404
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.133333333	0.1351
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.688888889	0.70252
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001333	0.000001486
						1325 (609)	Формальдегид (Метаналь) (609)	0.013333333	0.01351
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.322222222	0.32424
0005	3	0.33	14.17	1.2119581	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	1.426133333	0.877548
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.231746667	0.14260155
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.074277778	0.0470115
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.297111111	0.188046
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	1.124777778	0.689502
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002334	0.00000141

		Лист
	OOC	43

1	2	3	4	5	6	7	7а	8	9
						1325 (609)	Формальдегид (Метаналь) (609)	0.021222222	0.0125364
						2754 (10)	Алканы С12-19 /в пересчете	0.509333333	0.31341
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0006	3	0.33	14.17	1.2115697	450	0333 (518)	Сероводород (0.00020216	0.0005768
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.07199784	0.2054232
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
8000	3	0.33	14.17	1.2115697	450	0333 (518)	Сероводород (0.00020216	0.0005768
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.07199784	0.2054232
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0010	2	0.5	0.27	0.0530144	450	0301 (4)	Азота (IV) диоксид (Азота	0.0206	0.0464744
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0033475	0.00755209
						0328 (583)	Углерод (Сажа, Углерод	0.00175	0.004053
						, ,	черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.00275	0.0060795
						, ,	сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.018	0.04053
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	3.3e-8	7.4e-8
						1325 (609)	Формальдегид (Метаналь) (609)	0.000375	0.0008106

	Лист
OOC	44

1	2	3	4	5	6	7	7а	8	9
						2754 (10)	Алканы С12-19 /в пересчете	0.009	0.020265
						, ,	на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0011	2	0.5	0.27	0.0530144	450	0301 (4)	Азота (IV) диоксид (Азота диоксид)	0.0206	0.0464744
						0304 (6)	Азот (II) оксид (Азота	0.0033475	0.00755209
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00175	0.004053
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.00275	0.0060795
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.018	0.04053
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4-	3.3e-8	7.4e-8
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (609)	0.000375	0.0008106
						2754 (10)	Алканы С12-19 /в пересчете	0.009	0.020265
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0012	3	0.5	2	0.3926991	450	0333 (518)	Сероводород (0.0000182	0.016464
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0064818	5.863536
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0013	2	0.5	1.74	0.3416482	450	0301 (4)	Азота (IV) диоксид (Азота диоксид)	0.0206	0.0464744
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0033475	0.00755209

	Лист
OOC	45

1	2	3	4	5	6	7	7a	8	9
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.00175	0.004053
						0330 (516)	Сера диоксид (Ангидрид	0.00275	0.0060795
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.018	0.04053
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4-	3.3e-8	7.4e-8
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (609)	0.000375	0.0008106
						2754 (10)	Алканы С12-19 /в пересчете	0.009	0.020265
							на С/ (Углеводороды предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0014	3	0.33	14.17	1.2119581	450	0301 (4)	Азота (IV) диоксид (Азота	1.426133333	0.877548
0014		0.55	14.17	1.2113301	450	0501 (4)	диоксид) (4)	1,420100000	0.077540
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.231746667	0.14260155
						0328 (583)	Углерод (Сажа, Углерод	0.074277778	0.0470115
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.297111111	0.188046
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	1.124777778	0.689502
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.000002334	0.0000141
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (609)	0.021222222	0.0125364
						2754 (10)	Алканы С12-19 /в пересчете	0.509333333	0.31341
							на С/ (Углеводороды предельные		
							С12-С19 (в пересчете на С);		

	Лист
OOC	46

1	2	3	4	5	6	7	7а	8	9
							Растворитель РПК-265П) (10)		
6001	2				30	0415 (1502*)	Смесь углеводородов	0.007902	0.0606784068
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.005268	0.0404522712
							предельных С6-С10 (1503*)		
6002	1					2908 (494)	Пыль неорганическая,	2.4	0.7776
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного производства		
							- глина, глинистый сланец,		
							доменный шлак, песок, клинкер,		
							зола, кремнезем, зола углей		
6000						2000 (40.4)	казахстанских месторождений)	2.005	0.022
6003	1					2908 (494)	Пыль неорганическая,	2.667	0.922
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного производства		
							- глина, глинистый сланец, доменный шлак, песок, клинкер,		
							доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
							казахстанских месторождений)		
6004	1					2908 (494)	Пыль неорганическая,	0.0699	0.02265
0004	1					2300 (434)	содержащая двуокись кремния	0.0033	0.02203
							в %: 70-20 (шамот, цемент,		
							пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских		
							месторождений) (494)		
6005	$ $ $_{1} $					2908 (494)	Пыль неорганическая,	0.0699	0.02265
							содержащая двуокись кремния		

	Лист
OOC	47

1	2	3	4	5	6	7	7а	8	9
6006	1					2908 (494)	в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный	0.4	0.389
6007	2					2908 (494)	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный	1.011	0.3494
6008	2					0123 (274)	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Железо (II, III) оксиды (в пересчете на железо) (триоксид,	0.01351	0.00292
						0143 (327)	Железа диЖелезо оксид) (274) Марганец и его соединения (0.00106	0.000229
						0301 (4)	в пересчете на марганца (IV) оксид) Азота (IV) диоксид (Азота диоксид) (4)	0.0021	0.000454

	Лист
OOC	48

1	2	3	4	5	6	7	7а	8	9
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000341	0.0000737
						0337 (584)	Углерод оксид (Окись	0.01293	0.002793
							углерода, Угарный газ) (584)		
						0342 (617)	Фтористые газообразные соединения /	0.000904	0.0001953
							в пересчете на фтор/ (617)		
						0344 (615)	Фториды неорганические	0.000972	0.00021
							плохо растворимые - (
							алюминия фторид, кальция		
							фторид, натрия		
							гексафторалюминат) (Фториды		
							неорганические плохо		
							растворимые /в пересчете на		
							фтор/) (615)		
						2908 (494)	Пыль неорганическая,	0.000972	0.00021
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских		
6000						0400 (054)	месторождений) (494)	0.00500	0.000
6009	2					0123 (274)	Железо (II, III) оксиды (в	0.03586	0.032
							пересчете на железо) (
							диЖелезо триоксид, Железа		
						04.40 (005)	оксид) (274)	0.000=00	0.0004505
						0143 (327)	Марганец и его соединения (0.000528	0.0004705
							в пересчете на марганца (
						0201 (4)	IV) оксид) (327)	0.01.40.4	0.0137
						0301 (4)	Азота (IV) диоксид (Азота диоксид)	0.01424	0.0127
1						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.002315	0.002064

	Лист
OOC	49

-	-		-	
	в периол	провеления	строительно-	монтажных работ

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись	0.0176	0.0157
							углерода, Угарный газ) (584)		
6010	2					0301 (4)	Азота (IV) диоксид (Азота диоксид)	0.00334	0.0004334
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000543	0.0000704
6011	2					0616 (203)	Диметилбензол (смесь о-, м-	0.208	0.094
							, п- изомеров) (203)		
						2752 (1294*)	Уайт-спирит (1294*)	0.617	1.375542
6012	2					2902 (116)	Взвешенные частицы (116)	0.0052	0.0144
						2930 (1027*)	Пыль абразивная (Корунд	0.0034	0.00942
							белый, Монокорунд) (1027*)		
6013	2					2735 (716*)	Масло минеральное нефтяное	0.0000758	0.000073
							(веретенное, машинное,		
							цилиндровое и др.) (716*)		
6014	2					0333 (518)	Сероводород (0.0000021336	0.000004396
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0007598664	0.001565604
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
6016	2					2908 (494)	Пыль неорганическая, содержащая	0.00884	1.394
							двуокись кремния в %: 70-20 (
							шамот, цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских		
							месторождений) (494)		

Примечание: В графе 7 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

	Лист
OOC	50

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

3. Показатели работы пылегазоочистного оборудования (ПГО) в период проведения строительно-монтажных работ

Номер источника	Наименование и тип пылегазоулавливающего	КПД аппаратов, %		Код загрязняющего	Коэффициент обеспеченности		
выделения	оборудования	Проектный	Фактичес- кий	вещества по котор.проис- ходит очистка	K(1),%		
1	2	3	4	5	6		
Пылегазоочистное оборудование отсутствует!							

	Лист
OOC	51

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год в период проведения строительно-монтажных работ

Код	Наименование	Количество	В том	числе	Из по	оступивших на оч	истку	Всего
заг- ряз- няющ	загрязняющего вещества	загрязняющих веществ отходящих от	выбрасыва- ется без	поступает на	выброшено в	уловлено и (обезврежено	выброшено в атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизировано	
1	2	3	4	5	6	7	8	9
			риод проведения с	троительно-монта	ажных работ			
	ВСЕГО по площадке: 01	24.79866872	24.79866872	0	0	0	0	24.79866872
	в том числе:							
	Твердые:	4.237886692	4.237886692	0	0	0	0	4.237886692
l .	из них:							
0123	Железо (II, III) оксиды (в	0.03492	0.03492	0	0	0	0	0.03492
	пересчете на железо) (диЖелезо							
	триоксид, Железа оксид) (274)							
	Марганец и его соединения (в	0.0006995	0.0006995	0	0	0	0	0.0006995
	пересчете на марганца (IV) оксид) (327)							
	Углерод (Сажа, Углерод черный) (583)	0.3007188	0.3007188	0	0	0	0	0.3007188
	Фториды неорганические плохо	0.00021	0.00021	0	0	0	0	0.00021
	растворимые - (алюминия							
	фторид, кальция фторид,							
	натрия гексафторалюминат) (
	Фториды неорганические плохо							
	растворимые /в пересчете на							
	фтор/) (615)	0.000000202	0.000000303			0		0.000000202
	Бенз/а/пирен (3,4-Бензпирен) (54)	0.000008392	0.000008392	0	0	0	0	0.000008392
	Взвешенные частицы (116)	0.0144	0.0144	0	0	0	0	0.0144
2908	Пыль неорганическая,	3.87751	3.87751	0	0	0	0	3.87751

	Лист
OOC	52

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год в период проведения строительно-монтажных работ

1	2	3	4	5	6	7	8	9
	содержащая двуокись кремния в							
	%: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак,							
	песок, клинкер, зола, кремнезем, зола							
	углей казахстанских месторождений)							
2930	Пыль абразивная (Корунд	0.00942	0.00942	0	0	0	0	0.00942
	белый, Монокорунд) (1027*)							
	Газообразные, жидкие:	20.560782028	20.560782028	0	0	0	0	20.560782028
	из них:							
0301	Азота (IV) диоксид (Азота диоксид) (4)	5.0206954	5.0206954	0	0	0	0	5.0206954
	Азот (II) оксид (Азота оксид) (6)	0.81586315	0.81586315	0	0	0	0	0.81586315
0330	Сера диоксид (Ангидрид сернистый,	0.8806725	0.8806725	0	0	0	0	0.8806725
	Сернистый газ, Сера (IV) оксид) (516)							
	Сероводород (Дигидросульфид) (518)	0.017621996	0.017621996	0	0	0	0	0.017621996
0337	Углерод оксид (Окись	4.0480654	4.0480654	0	0	0	0	4.0480654
	углерода, Угарный газ) (584)							
0342	Фтористые газообразные	0.0001953	0.0001953	0	0	0	0	0.0001953
	соединения /в пересчете на фтор/ (617)							
0415	Смесь углеводородов	0.0606784068	0.0606784068	0	0	0	0	0.0606784068
	предельных С1-С5 (1502*)							
0416	Смесь углеводородов	0.0404522712	0.0404522712	0	0	0	0	0.0404522712
	предельных С6-С10 (1503*)							
0616	Диметилбензол (смесь о-, м-,	0.094	0.094	0	0	0	0	0.094
	п- изомеров) (203)							
1	Формальдегид (Метаналь) (609)	0.0761388	0.0761388	0	0	0	0	0.0761388
2735	Масло минеральное нефтяное (0.000073	0.000073	0	0	0	0	0.000073

	Лист
OOC	53

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год в период проведения строительно-монтажных работ

1	2	3	4	5	6	7	8	9
2752 2754	веретенное, машинное, цилиндровое и др.) (716*) 2 Уайт-спирит (1294*) 4 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1.375542 8.130783804	1.375542 8.130783804	-	0	0	0	1.375542 8.130783804

	Лист
OOC	54

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 1. Источники выделения вредных (загрязняющих) веществ в период проведения испытания

Наименование производства номер цеха,	Номер источ- ника загряз	Номер источ- ника выде-	Наименование источника выделения загрязняющих	Наименование выпускаемой продукции	источ	работы иника ния,час	Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
участка	нения	ления	веществ		В	за		наименование	от источника
	атм-ры				сутки	год			выделения, т/год
Α	1	2	3	4	5	6	7	8	9
		-		в период	проведени	я испытан	пия		
(001) При испытании БОР-	0001	0001 01	Буровая установка ZJ-30			1533.6	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	1.152
5			(или аналог)				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.1872
							Углерод (Сажа, Углерод черный) (583)	0328(583)	0.072
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330(516)	0.18
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (0337(584)	0.936
							584) Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.00000198

	Лист
OOC	55

1. Источники выделения вредных (загрязняющих) веществ в период проведения испытания

Α	1	2	3	4	5	6	7	8	9
							Формальдегид (Метаналь) (609)	1325(609)	0.018
							Алканы С12-19 /в пересчете	2754(10)	0.432
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0002	0002 01	Цементировочный			1533.6	Азота (IV) диоксид (Азота	0301(4)	1.152
			агрегат ЦА-320				диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.1872
							оксид) (6)	0220(502)	0.072
							Углерод (Сажа, Углерод черный) (583)	0328(583)	0.072
							Сера диоксид (Ангидрид	0330(516)	0.18
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	0.936
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4-	0703(54)	0.00000198
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325(609)	0.018
							Алканы С12-19 /в пересчете	2754(10)	0.432
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0003	0003 01	Дизельный			1533.6	Азота (IV) диоксид (Азота	0301(4)	1.62208
			генератор				диоксид) (4)		
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.263588
							Углерод (Сажа, Углерод черный)	0328(583)	0.10138
							Сера диоксид (Ангидрид	0330(516)	0.25345

	Лист
OOC	56

1. Источники выделения вредных (загрязняющих) веществ в период проведения испытания

A	1	2	3	4	5	6	7	8	9
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337(584)	1.31794
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000002788
							Формальдегид (Метаналь) (609)	1325(609)	0.025345
							Алканы С12-19 /в пересчете	2754(10)	0.60828
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0004	0004 01	Силовой привод			1533.6	Азота (IV) диоксид (Азота	0301(4)	1.62208
			буровой				диоксид) (4)		
			установки				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.263588
							Углерод (Сажа, Углерод черный)	0328(583)	0.10138
							Сера диоксид (Ангидрид	0330(516)	0.25345
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)	0227/504)	1 21504
							Углерод оксид (Окись	0337(584)	1.31794
							углерода, Угарный газ) (584)	0702(5.4)	0.000007700
							Бенз/а/пирен (3,4-	0703(54)	0.000002788
							Бензпирен) (54)	1225(600)	0.025345
							Формальдегид (Метаналь) (609)	1325(609) 2754(10)	0.025345
							Алканы С12-19 /в пересчете на С/ (Углеводороды	2/34(10)	0.00020
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
П D d	h	,		1 П	1		инастра эправосурания		

Примечание: В графе 8 в скобках указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

	Лист
OOC	57

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 2. Характеристика источников загрязнения атмосферного воздуха

в период проведения испытания

Номер источ ника	_	раметры 1.загрязнен.	_	етры газовоздушной о оде источника загрязн	смеси	Код загряз- няющего вещества		Количество за веществ, выбј в атмо	расываемых
заг- ряз- нения	Высота м	Диаметр, размер сечения	Скорость м/с	Объемный расход, м3/с	Темпе- ратура, С	(ЭНК, ПДК или ОБУВ)	Наименование ЗВ	Максимальное, г/с	Суммарное, т/год
1	2	устья, м 3	4	5	6	7	7a	8	9
1		ა	4	3		·	,	0	9
	I I		l I	I	в перис	од проведения испь 	ггания 	l I	
0001	2	0.2	18.14	0.5700225	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.256	1.152
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0416	0.1872
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.016666667	0.072
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.04	0.18
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.206666667	0.936
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.0000004	0.00000198
						1325 (609)	Формальдегид (Метаналь) (609)	0.004	0.018
						2754 (10)	Алканы С12-19/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.096666667	0.432
0002	2	0.2	18.14	0.5700225	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.256	1.152
	_			0,57 00=25	.50	0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0416	0.1872

	Лист
OOC	58

2. Характеристика источников загрязнения атмосферного воздуха в период проведения испытания

1	2	3	4	5	6 6	од проведения 1	7a	8	9
		J	4	J	0	0220 (502)		0.016666667	0.072
						0328 (583)	Углерод (Сажа, Углерод черный)		
						0330 (516)	Сера диоксид (Ангидрид	0.04	0.18
							сернистый, Сернистый газ,		
						0005 (504)	Сера (IV) оксид) (516)	0.00000000	0.000
						0337 (584)	Углерод оксид (Окись	0.206666667	0.936
						0=00 (= 1)	углерода, Угарный газ) (584)	0.000004	0.0000100
						0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0.0000004	0.00000198
						1325 (609)	Формальдегид (Метаналь) (609)	0.004	0.018
						2754 (10)	Алканы С12-19 /в пересчете	0.096666667	0.432
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0003	2	0.3	11	0.7775442	450	0301 (4)	Азота (IV) диоксид (Азота	0.548266667	1.62208
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.089093333	0.263588
						0328 (583)	Углерод (Сажа, Углерод	0.035694444	0.10138
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.085666667	0.25345
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.442611111	1.31794
							углерода, Угарный газ) (584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.000000857	0.000002788
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (609)	0.008566667	0.025345
						2754 (10)	Алканы С12-19 /в пересчете	0.207027778	0.60828
							на С/ (Углеводороды		
							предельные С12-С19 (в		

	Лист
OOC	59

2. Характеристика источников загрязнения атмосферного воздуха в период проведения испытания

1	2	3	4	- 1	6	д проведения ис		0	0
		3	4	5	0	/	7a	8	9
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0004	2	0.3	16	1.1309734	450	0301 (4)	Азота (IV) диоксид (Азота	0.7168	1.62208
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.11648	0.263588
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.046666667	0.10138
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.112	0.25345
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.578666667	1.31794
							углерода, Угарный газ) (
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.00000112	0.000002788
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (0.0112	0.025345
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.270666667	0.60828
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
				V 000			Растворитель РПК-265П) (10)		

Примечание: В графе 7 в скобках указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

	Лист
OOC	60
	1

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

3. Показатели работы пылегазоочистного оборудования (ПГО) в период проведения испытания

Номер источника	Наименование и тип пылегазоулавливающего	КПД аппа	аратов, %	Код загрязняющего	Коэффициент обеспеченности						
выделения	оборудования	Проектный	Фактичес- кий	вещества по котор.проис- ходит очистка	K(1),%						
1	2	3	4	5	6						
	Пылегазоочистное оборудование отсутствует!										

	Лист
000	61

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год в период проведения испытания

Код заг-	Наименование	Количество загрязняющих	В том	числе	Из п	оступивших на очи	істку	Всего выброшено				
ряз-	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и о	обезврежено	В				
няющ	вещества	отходящих от	ется без	на	В	,		атмосферу				
веще ства		источника выделения	очистки	очистку	атмосферу	фактически	из них ути- лизировано					
1	2	3	4	5	6	7	8	9				
	в период проведения испытания											
	ВСЕГО по площадке: 01	14.338535536	14.338535536	0	0	0	0	14.338535536				
	в том числе:											
	Твердые:	0.346769536	0.346769536	0	0	0	0	0.346769536				
ll .	из них:											
	Углерод (Сажа, Углерод черный) (583)	0.34676	0.34676	0	0	0	0	0.34676				
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0.000009536	0.000009536	0	0	0	0	0.000009536				
	Газообразные, жидкие:	13.991766	13.991766	0	0	0	0	13.991766				
	из них:			_	_							
	Азота (IV) диоксид (Азота	5.54816	5.54816	0	0	0	0	5.54816				
	диоксид) (4)	0.004556	0.004550	0	0			0.004550				
	Азот (II) оксид (Азота оксид) (6)	0.901576	0.901576	0	0	0	0	0.901576				
	Сера диоксид (Ангидрид	0.8669	0.8669	0	0	U	U	0.8669				
	сернистый, Сернистый газ, Сера (IV) оксид) (516)											
	Углерод оксид (Окись	4.50788	4.50788	0	0	0	0	4.50788				
	углерода, Угарный газ) (584)	4.50700	4.50700	O	U	O O	ď	4.30700				
	Формальдегид (Метаналь) (609)	0.08669	0.08669	0	0	0	0	0.08669				
	Алканы С12-19 /в пересчете на	2.08056	2.08056	0	0	0	0	2.08056				
	С/ (Углеводороды предельные			Ŭ	· ·							
	С12-С19 (в пересчете на С);											
	Растворитель РПК-265П) (10)			_								

		Лист
00	C	62

Таблица 3.2.5.

Перечень источников, дающих наибольшие вклады в уровень загрязнения

Код вещества/группы суммации	Наименование вещества	концентрац	максимальная приземная ия (общая и без учета фона) оля ПДК / мг/мЗ	Коор максим			дающие наибольший накс. концентрацию	Принадлежность источника (производство, цех, участок)	
		в жилой зоне	В пределах зоны воздействия		В пределах зоны воздейст- вия X/Y	N ист.	ЖЗ	% вклада Область воздействия	
1	2	3	4	5	6	7	8	9	10
			Существующе	е положе	ние (2023 год.)				
			Загрязняк) щие в	ещества:				
		Н	а территории производственн	ых объек	тов отсутствует з	жилая	зона.		

Таблица 3.2.6.

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ

График	Цех,	Мероприятия на	Вещества, по	Характеристика источников, на которых проводится снижение выбросов										
работы источник	участок, (номер	_	которым проводится сокращение выбросов			ы на карте- еме	Па	-				іходе из исто их сокращені		
a	режима работы предприяти я в период НМУ)	метеорологических условий		Номер на карте-схеме объекта (города)	точечного источника, центра группы источников или одного конца линейного источника	линейного источника	ВЫСОТА, М	диаметр источника выбросов, м	скорость, м/с	объем, м3/с	температура, ⁰ С	мощность выбросов без учета мероприятий, г/с	мощность выбросов после мероприятий, г/с	Степень эффективности мероприятий, %
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

	Лист
OOC	63

Разработка мероприятий для периодов НМУ не требуется.

При выбросов ЗВ не окажут измеряемого воздействия на качество атмосферного воздуха в ближайших населенных пунктах в виду временного локального характера воздействия

Таблица 3.2.7.

ПЛАН технических мероприятий по снижению выбросов загрязняющих веществ в атмосферу с целью достижения нормативов допустимых выбросов

		N	Значение выбросов			Значение выбросов			Значение выбросов Сроки		оки	Затраты і	на ре-
Наименование	Наименование	источ		выполнен		інен.	ализ.меро	прия-					
мероприятий	вещества	выбро	до реализации		после ре	кв.,год		тий, тыс.тенге					
		са на	мероприятия		мероприятия			_					
		карте					на-	окон	капита-	основн			
		схеме	г/сек	т/год	г/сек	т/год	чало	чан.	ловлож.	деят.			
1	2	3	4 5		6 7		8	9	10	11			

Ввиду кратковременности работ, разработка Плана технических мероприятий нецелесообразна. Общий план технических мероприятий приведен в Проекте НДВ.

Таблица 3.2.8.

Перечень источников залповых выбросов

Наименование	Наименование	Выбросы веществ, г/с		Периодичность,	Продолжительность	Годовая
производств	вещества	по регламенту	залповый	раз/год	выброса, час, мин.	величина
(цехов) и			выброс			залповых
источников						выбросов,
выбросов						
1	2	3	4	5	6	7

Залповые выбросы отсутствуют

OOC 64

3.3. Источники и масштабы расчетного химического загрязнения

Источники выбросов загрязняющих веществ в атмосферу подразделяются на организованные и неорганизованные. Организованный источник выброса оборудован устройством для направленного вывода в атмосферу загрязняющих веществ (выхлопная труба, дымовая труба). Неорганизованные источники выбросов – это выбросы, поступающие в атмосферу в виде ненаправленных потоков.

Источники загрязнения атмосферного воздуха при СМР:

Всего выявлено 14 организованных и 16 неорганизованных источников выбросов вредных веществ в атмосферу на период строительно-монтажных работах:

- источник 0001 Дизель-генератор буровой установки TAD 1641GE Volvo
- источник 0002 Дизель-генератор буровой установки TAD 1641GE Volvo (резерв)
- источник 0003 Буровая установка ZJ-30 (или аналог)
- источник 0004 Цементировочный агрегат ЦА-320
- источник 0005 Цементно-смесительная машина СМН-20
- источник 0006 0007 Hacoc буровой F-1000 2шт.
- источник 0008 0009 Буровой насос 2шт.
- источник 0010 Дизельные двигатели насоса Chidong G12V190PZL1
- источник 0011 Дизельные двигатели насоса Chidong G12V190PZL1
- источник 0012 Резервуар для дизельного топлива
- источник 0013 ППУ
- источник 0014 Дизельные двигатели САТ 3408В
- источник 6001 Линия дизтоплива;
- источник 6002 Перемещение грунта бульдозерами;
- источник 6003 Засыпка грунта бульдозерами
- источник 6004 Уплотнение грунта катками и трамбовками
- источник 6005 Пыление при передвижении автотранспорта
- источник 6006 Пылящая поверхность бурильные работы
- источник 6007 Узел пересыпки грунта
- источник 6008 Сварочные работы
- источник 6009 Газовая резка
- источник 6010 Пропано-бутановая сварка
- источник 6011 Покрасочные работы
- источник 6012 Шлифовальный станок
- источник 6013 Емкость для отработанного масла 6м3
- источник 6014 6015 Емкость для диз. топлива 34 м3 2шт.
- источник 6016 Устройство насыпи из щебня под буровую площадку

Источники загрязнения атмосферного воздуха при испытании:

Всего выявлено 4 организованных источников выбросов вредных веществ в атмосферу на период строительства:

- источник 0001 Буровая установка ZJ-30 (или аналог)
- источник 0002 Цементировочный агрегат ЦА-320
- источник 0003 Дизельный генератор
- источник 0004 Силовой привод буровой установки

В период строительных работ будут использованы спецтехника и автотранспорт, работающие на дизельном топливе и на бензине. Перечень спецтехники и автотранспорта, используемого при строительстве и необходимое количество ГСМ приведены ниже в таблице 3.3.3.

	Лист
OOC	65

3.4. Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух

При выполнении мероприятий по сокращению выбросов рекомендуется:

- уменьшить, по возможности, движение транспорта на территории;
- интенсифицировать влажную уборку, территории, где это допускается правилами техники безопасности;
- упорядочить движение транспорта и другой техники по территории рассматриваемого объекта.

3.5. Определение нормативов допустимых выбросов загрязняющих веществ

Работы, предусмотренные проектом, проводятся последовательно и носят локальный характер. Поэтому выбросы загрязняющих веществ, образующиеся в результате проведения работ, можно принять в качестве декларируемого количества загрязняющих веществ. На основании результатов расчета выбросов в атмосфере составлен перечень загрязняющих веществ, выбросы которых предложены в качестве декларируемых. Количество загрязняющих веществ устанавливается для каждого источника загрязнения атмосферы и представлено соответственно в таблице 3.5.1.

Таблица 3.5.1 Нормируемые выбросы загрязняющих веществ в атмосферу при строительномонтажных работах СМР

Нормативы выбросов загрязняющих веществ в атмосферу по объекту в период проведения строительно-монтажных работ

	Но-		Нормативы выбросов загрязняющих веществ								
Производство цех, участок	мер ис- точ- ника		цее положение)23 год	на 202	3 год	нд	В	год дос- тиже			
Код и наименование загрязняющего вещества	IIIII	г/с	т/год	г/с	т/год	г/с	т/год	ния НДВ			
1	2	3	4	5	6	7	8	9			
**0123, Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид											
Неорганизованные и				_			·]			
При строительно-	6008	0.00	0.00	0.01351	0.00292	0.01351	0.00292	2023			
монтажных работах (СМР)											
При строительно-	6009	0.00	0.00	0.03586	0.032	0.03586	0.032	2023			
монтажных работах (СМР)											
Итого:		0.00	0.00	0.04937	0.03492	0.04937	0.03492				
Всего по загрязняющему		0.00	0.00	0.04937	0.03492	0.04937	0.03492	2023			
веществу:											
**0143, Марганец и его соеди	нения (в пересчете на	а марганца (IV)	оксид)		'					
Неорганизованные и	1СТОЧ	іники .									
При строительно-	6008	0.00	0.00	0.00106	0.000229	0.00106	0.000229	2023			
монтажных работах (СМР)											
При строительно-	6009	0.00	0.00	0.000528	0.0004705	0.000528	0.0004705	2023			
монтажных работах (СМР)											
Итого:		0.00	0.00	0.001588	0.0006995	0.001588	0.0006995				
Всего по загрязняющему		0.00	0.00	0.001588	0.0006995	0.001588	0.0006995	2023			
веществу:											
**0301, Азота (IV) диоксид (А	зота ди	юксид) (4)	•	-	•			<u> </u>			
Организованные ист											
При строительно-	0001	0.00	0.00	1.002666667	0.6916544	1.002666667	0.6916544	2023			
монтажных работах (СМР)											
При строительно-	0002	0.00	0.00	1.002666667	0.6916544	1.002666667	0.6916544	2023			
монтажных работах (СМР)											
При строительно-	0003	0.00	0.00	0.853333333	0.86464	0.853333333	0.86464	2023			
			<u></u>		'			<u>'</u>			

Лист

r .								
монтажных работах (СМР) При строительно-	0004	0.00	0.00	0.853333333	0.86464	0.853333333	0.86464	2023
монтажных работах (СМР)	0004	0.00	0.00	0.033333333	0.00404	0.03333333	0.00404	2023
При строительно-	0005	0.00	0.00	1.426133333	0.877548	1.426133333	0.877548	2023
монтажных работах (СМР)								
При строительно-	0010	0.00	0.00	0.0206	0.0464744	0.0206	0.0464744	2023
монтажных работах (СМР) При строительно-	0011	0.00	0.00	0.0206	0.0464744		0.0464744	
монтажных работах (СМР)	0011	0.00	0.00	0.0200	0.0404744		0.0404744	
При строительно-	0013	0.00	0.00	0.0206	0.0464744		0.0464744	
монтажных работах (
СМР) При строительно-	0014	0.00	0.00	1.426133333	0.877548		0.877548	
монтажных работах (0014	0.00	0.00	1.420133333	0.077540		0.077540	
CMP)		0.00	0.00	0.00000000	5 005100	E 4 E 0 E 2 2 2 2 2 2	E 005100	
Итого: Неорганизованные и	 1 С Т О Ч	0.00 ники	0.00	6.626066666	5.007108	5.158733333	5.007108	
При строительно-	6008	0.00	0.00	0.0021	0.000454	0.0021	0.000454	2023
монтажных работах (СМР)								
При строительно-	6009	0.00	0.00	0.01424	0.0127	0.01424	0.0127	2023
монтажных работах (
СМР) При строительно-	6010	0.00	0.00	0.00334	0.0004334	0.00334	0.0004334	2023
монтажных работах (0010	0.00	0.00	0.00334	0.0004354	0.00554	0.0004334	2023
CMP)		0.00	0.00	0.01060	0.0405054	0.01050	0.0405054	
Итого:		0.00	0.00	0.01968	0.0135874	0.01968	0.0135874	
Всего по загрязняющему		0.00	0.00	6.645746666	5.0206954	5.178413333	5.0206954	2023
веществу: **0304_A (II) (A		(C)						
**0304, Азот (II) оксид (Азота Организованные ист								
При строительно-	0001	0.00	0.00	0.162933333	0.11239384	0.162933333	0.11239384	2023
монтажных работах (СМР)								
При строительно-	0002	0.00	0.00	0.162933333	0.11239384	0.162933333	0.11239384	2023
монтажных работах (
СМР) При строительно-	0003	0.00	0.00	0.138666667	0.140504	0.138666667	0.140504	2023
монтажных работах (0005	0.00	0.00	0.150000007	0.110501	0.150000007	0.1 1050 1	2025
CMP)	0004	0.00	0.00	0.138666667	0.140504	0.138666667	0.140504	2023
При строительно- монтажных работах (0004	0.00	0.00	0.13000000/	0.140504	0.130000007	0.140504	2023
CMP)								
При строительно- монтажных работах (0005	0.00	0.00	0.231746667	0.14260155	0.231746667	0.14260155	2023
СМР)								
При строительно-	0010	0.00	0.00	0.0033475	0.00755209	0.0033475	0.00755209	2023
монтажных работах (СМР)								
При строительно-	0011	0.00	0.00	0.0033475	0.00755209		0.00755209	
монтажных работах (СМР)								
При строительно-	0013	0.00	0.00	0.0033475	0.00755209		0.00755209	
монтажных работах (
СМР) При строительно-	0014	0.00	0.00	0.231746667	0.14260155		0.14260155	
монтажных работах (0014	0.00	0.00	0.231740007	0.14200133		0.14200155	
CMP)		0.00	0.00	1.076725024	0.01005505	0.020204167	0.01265505	
Итого: Неорганизованные и	 1 C T O Y	0.00 ники	0.00	1.076735834	0.81365505	0.838294167	0.81365505	
При строительно-	6008	0.00	0.00	0.000341	0.0000737	0.000341	0.0000737	2023
монтажных работах (СМР)								
При строительно-	6009	0.00	0.00	0.002315	0.002064	0.002315	0.002064	2023
монтажных работах (
CMP)								

OOC 67

l ,							
1	2	3	4	5	6	7	8 9
При строительно-	6010	0.00	0.00	0.000543	0.0000704	0.000543	0.0000704 2023
монтажных работах (
CMP)							
Итого:		0.00	0.00	0.003199	0.0022081	0.003199	0.0022081
Всего по загрязняющему		0.00	0.00	1.079934834	0.81586315	0.841493167	0.81586315 2023
веществу:							
**0328, Углерод (Сажа, У	глеро	д черный) (583)					
Организованные	исто	очники					
При строительно-	0001	0.00	0.00	0.065277778	0.0432284	0.065277778	0.0432284 2023
монтажных работах (
CMP)							
При строительно-	0002	0.00	0.00	0.065277778	0.0432284	0.065277778	0.0432284 2023
монтажных работах (
CMP)							
При строительно-	0003	0.00	0.00	0.05555556	0.05404	0.05555556	0.05404 2023
монтажных работах (
CMP)							
При строительно-	0004	0.00	0.00	0.05555556	0.05404	0.05555556	0.05404 2023
монтажных работах (11101011
CMP)							
При строительно-	0005	0.00	0.00	0.074277778	0.0470115	0.074277778	0.0470115 2023
монтажных работах (0005	0.00	0.00	0.07 1277770	0.0 17 0115	0.07 1277770	0.0 17 0115 2025
CMP)							
При строительно-	0010	0.00	0.00	0.00175	0.004053	0.00175	0.004053 2023
монтажных работах (0010	0.00	0.00	0.00173	0.00-033	0.00173	0.004033 2023
CMP)							
При строительно-	0011	0.00	0.00	0.00175	0.004053		0.004053
монтажных работах (0011	0.00	0.00	0.00173	0.004033		0.004033
СМР)							
При строительно-	0013	0.00	0.00	0.00175	0.004053		0.004053
монтажных работах (0013	0.00	0.00	0.00173	0.004033		0.004033
СМР)							
При строительно-	0014	0.00	0.00	0.074277778	0.0470115		0.0470115
	0014	0.00	0.00	0.0/42////0	0.04/0113		0.04/0115
монтажных работах (
СМР) Итого:		0.00	0.00	0.395472224	0.3007188	0.317694446	0.3007188
итого:		0.00	0.00	0.3954/2224	0.300/188	0.31/694446	0.300/188
Всеро не заправить		0.00	0.00	0.205472224	0.2007100	0.217604446	0.2007100 2022
Всего по загрязняющему		0.00	0.00	0.395472224	0.3007188	0.317694446	0.3007188 2023
веществу:	<u> </u>			(IV) \			
**0330, Сера диоксид (Ан			рнистыи газ, Се	ра (1 V) оксид)			
Организованные			0.00	0.45000005	0.400054	0.45000005	0.400054
При строительно-	0001	0.00	0.00	0.156666667	0.108071	0.156666667	0.108071 2023
монтажных работах (
CMP)	0000	0.00	0.00	0.45000000	0.400054	0.45000000	0.100071 0000
При строительно-	0002	0.00	0.00	0.156666667	0.108071	0.156666667	0.108071 2023
монтажных работах (
CMP)]		
При строительно-	0003	0.00	0.00	0.133333333	0.1351	0.133333333	0.1351 2023
монтажных работах (
CMP)							
При строительно-	0004	0.00	0.00	0.133333333	0.1351	0.133333333	0.1351 2023
монтажных работах (
CMP)							
При строительно-	0005	0.00	0.00	0.297111111	0.188046	0.297111111	0.188046 2023
монтажных работах (

	Лист
OOC	68

1	2	3	4	5	6	7	8	9
CMP)	_	3	r	3	<u> </u>	,	<u> </u>	
При строительно-	0010	0.00	0.00	0.00275	0.0060795	0.00275	0.0060795	2023
монтажных работах (СМР)								
При строительно-	0011	0.00	0.00	0.00275	0.0060795		0.0060795	
монтажных работах (0011	0.00	0.00	0.00275	0.0000755		0.0000733	
CMP)								
При строительно-	0013	0.00	0.00	0.00275	0.0060795		0.0060795	
монтажных работах (
CMP)								
При строительно-	0014	0.00	0.00	0.297111111	0.188046		0.188046	
монтажных работах (
CMP)		0.00	0.00	1 100 470000	0.0006725	0.070061111	0.0006725	
Итого:		0.00	0.00	1.182472222	0.8806725	0.879861111	0.8806725	
Всего по загрязняющему		0.00	0.00	1.182472222	0.8806725	0.879861111	0.8806725	2023
веществу:		0.00	0.00	1.1024/2222	0.0000725	0.075001111	0.0000723	2025
**0333, Сероводород (Ди	гидпос							-
Организованные								
При строительно-	0006	0.00	0.00	0.00020216	0.0005768		0.0005768	
монтажных работах (
CMP)								
При строительно-	0008	0.00	0.00	0.00020216	0.0005768		0.0005768	
монтажных работах (
CMP)	0010	0.00	0.00	0.0000100	0.016464		0.016464	
При строительно-	0012	0.00	0.00	0.0000182	0.016464		0.016464	
монтажных работах (СМР)								
Итого:		0.00	0.00	0.00042252	0.0176176		0.0176176	
Неорганизованны	е ис		0.00	0.000 12232	0.017 017 0	'	0.017 017 0	1
При строительно-	6014	0.00	0.00	0.0000021336	0.000004396		0.000004396	
монтажных работах (
CMP)								
Итого:		0.00	0.00	0.0000021336	0.000004396		0.000004396	
D		0.00	0.00	0.0004246526	0.017631006		0.017621006	
Всего по загрязняющему		0.00	0.00	0.0004246536	0.017621996		0.017621996	
веществу: **0337, Углерод оксид (О	LUICI X	итиорола Угарии	т <u>й</u> гээ) (594)					
Организованные			ын газ) (504)					
При строительно-	0001	0.809444444	0.5619692	0.809444444	0.5619692	0.809444444	0.5619692	2023
монтажных работах (0001	0.005111111	0.5015052	0.00511111	0.5015052	0.005111111	0.5015052	2025
CMP)								
При строительно-	0002	0.00	0.00	0.809444444	0.5619692	0.809444444	0.5619692	2023
монтажных работах (
CMP)								
При строительно-	0003	0.00	0.00	0.688888889	0.70252	0.688888889	0.70252	2023
монтажных работах (
СМР)	0004	0.00	0.00	U 600000000	0.70252	U 600000000	0.70252	2022
При строительно- монтажных работах (0004	0.00	0.00	0.688888889	0.70252	0.688888889	0./0252	2023
СМР)								
При строительно-	0005	0.00	0.00	1.124777778	0.689502	1.124777778	0.689502	2023
монтажных работах (3.00	3.00	, , , , , ,	2.000002		2.000002	
CMP)								
При строительно-	0010	0.00	0.00	0.018	0.04053	0.018	0.04053	2023
монтажных работах (0010							

	Лист
OOC	69

1	2	3	4	5	6	7	8	9
CMP)								
При строительно-	0011	0.00	0.00	0.018	0.04053		0.04053	
монтажных работах (
CMP)								
При строительно-	0013	0.00	0.00	0.018	0.04053		0.04053	
	0013	0.00	0.00	0.010	0.04033		0.04033	
монтажных работах (
CMP)								
При строительно-	0014	0.00	0.00	1.124777778	0.689502		0.689502	
монтажных работах (
CMP)								
Итого:		0.00	0.00	5.300222222	4.0295724	4.139444444	4.0295724	
Неорганизованны	еи.				'	'		'
При строительно-	6008	0.00	0.00	0.01293	0.002793	0.01293	0.002793	12023
	0000	0.00	0.00	0.01233	0.002733	0.01233	0.002733	2023
монтажных работах (
CMP)								
При строительно-	6009	0.00	0.00	0.0176	0.0157	0.0176	0.0157	2023
монтажных работах (
CMP)								
Итого:		0.00	0.00	0.03053	0.018493	0.03053	0.018493	
Всего по загрязняющему		0.00	0.00	5.330752222	4.0480654	4.169974444	4.0480654	2023
		0.00	0.00	3.330732222	4.0400054	4.103374444	4.0400054	2023
веществу:			1	/ (C1E)				L
**0342, Фтористые газооб	•		пересчете на фт	rop/ (617)				
Неорганизованны				,			•	. []
При строительно-	6008	0.00	0.00	0.000904	0.0001953	0.000904	0.0001953	2023
монтажных работах (
CMP)								
Итого:		0.00	0.00	0.000904	0.0001953	0.000904	0.0001953	
THOIG.		0.00	0.00	0.000504	0.0001333	0.000504	0.0001555	
D		0.00	0.00	0.000004	0.0001053	0.000004	0.0001053	2022
Всего по загрязняющему		0.00	0.00	0.000904	0.0001953	0.000904	0.0001953	2023
веществу:								
**0344, Фториды неорган	ическ	ие плохо раствој	римые - (алюмин	ния фторид,				
Неорганизованны	е и	сточники						
При строительно-	6008	0.00	0.00	0.000972	0.00021	0.000972	0.00021	2023
монтажных работах (
CMP)								
Итого:		0.00	0.00	0.000972	0.00021	0.000972	0.00021	
MIOIO.		0.00	0.00	0.000972	0.00021	0.000972	0.00021	
_		0.00	0.00	0.0000=0	0.00004	0.0000=0	0.00001	2000
Всего по загрязняющему		0.00	0.00	0.000972	0.00021	0.000972	0.00021	2023
веществу:								
**0415, Смесь углеводоро	дов п	редельных С1-С	5 (1502*)					
Неорганизованны			*					[]
При строительно-	6001	0.00	0.00	0.007902	0.0606784068	0.007902	0.0606784068	12023
монтажных работах (0001	0.00	0.00	0.007502	0.0000701000	0.007502	0.0000701000	2025
CMP)		0.00	0.00	0.007000	0.0005504000	0.007000	0.0005704060	
Итого:		0.00	0.00	0.007902	0.0606784068	0.007902	0.0606784068	
Всего по загрязняющему		0.00	0.00	0.007902	0.0606784068	0.007902	0.0606784068	2023
веществу:								
**0416, Смесь углеводоро	лов п	релельных С.6-С	10 (1503*)			-		
Неорганизованны			()					[]
1 *		0.00	0.00	0.005268	0.0404522712	0.005268	0.0404522712	العصوا
При строительно-	6001	0.00	0.00	0.005268	0.0404522/12	0.005268	0.0404522/12	2023
монтажных работах (
CMP)								
								•

	Лист
OOC	70

1	2	3	4	5	6	7	8	9
Итого:		0.0			0.0404522712	0.005268	0.0404522712	3
Всего по загрязняющему		0.0			0.0404522712	0.005268	0.0404522712	2023
веществу:								
**0616, Диметилбензол (с			ров) (203)					
Неорганизованны			-1	1		1		l
При строительно- монтажных работах (СМР)	6011	0.0	0.00	0.208	0.094	0.208	0.094	2023
Итого:		0.0	0.00	0.208	0.094	0.208	0.094	
Всего по загрязняющему веществу:		0.0	0.00	0.208	0.094	0.208	0.094	2023
**0703, Бенз/а/пирен (3,4-	-Бензп	ирен) (54)	•		•	•		
Организованные								
При строительно- монтажных работах (СМР)	0001	0.0	0.00	0.000001567	0.000001189		0.000001189	
При строительно- монтажных работах (0002	0.0	0.00	0.000001567	0.000001189	0.000001567	0.000001189	2023
CMP)								
При строительно- монтажных работах (СМР)	0003	0.0	0.00	0.000001333	0.000001486	0.000001333	0.000001486	2023
При строительно- монтажных работах (0004	0.0	0.00	0.000001333	0.000001486	0.000001333	0.000001486	2023
CMP)								
При строительно- монтажных работах (0005	0.0	0.00	0.000002334	0.00000141	0.000002334	0.00000141	2023
СМР) При строительно-	0010	0.0	0.00	3.3e-8	7.4e-8	3.3e-8	7.4e-8	2023
монтажных работах (СМР)	0010	0.0	0.00	3.36-0	7.46-0	3.36-0	7.40-0	2023
При строительно- монтажных работах (СМР)	0011	0.0	0.00	3.3e-8	7.4e-8		7.4e-8	
При строительно-монтажных работах (0013	0.0	0.00	3.3e-8	7.4e-8		7.4e-8	
СМР) При строительно-	0014	0.0	0.00	0.000002334	0.00000141		0.00000141	
монтажных работах (
(СМР) Итого:		0.0	0.00	0.000010567	0.000008392	0.0000066	0.000008392	
Всего по загрязняющему веществу:		0.0	0.00	0.000010567	0.000008392	0.0000066	0.000008392	
**1325, Формальдегид (M	Іетана	ль) (609)						
Организованные								
При строительно- монтажных работах (СМР)	0001	0.0	0.00	0.015666667	0.0108071		0.0108071	
При строительно- монтажных работах (0002	0.0	0.00	0.015666667	0.0108071	0.015666667	0.0108071	2023
СМР) При строительно-	0003	0.0	0.00	0.013333333	0.01351	0.013333333	0.01351	2023
					•	•		

	Лист
OOC	71

1	2	3	4	5	6	7	8	9
монтажных работах (СМР)								
При строительно- монтажных работах (0004	0.00	0.00	0.013333333	0.01351	0.013333333	0.01351	2023
СМР) При строительно-	0005	0.00	0.00	0.021222222	0.0125364	0.021222222	0.0125364	2023
монтажных работах (СМР)						****		
При строительно- монтажных работах (0010	0.00	0.00	0.000375	0.0008106	0.000375	0.0008106	2023
СМР) При строительно- монтажных работах (0011	0.00	0.00	0.000375	0.0008106		0.0008106	
СМР) При строительно-	0013	0.00	0.00	0.000375	0.0008106		0.0008106	
монтажных работах (СМР)								
При строительно- монтажных работах (0014	0.00	0.00	0.021222222	0.0125364		0.0125364	
СМР) Итого:		0.00	0.00	0.101569444	0.0761388	0.063930555	0.0761388	
Всего по загрязняющему веществу:		0.00	0.00	0.101569444	0.0761388	0.063930555	0.0761388	
**2735, Масло минеральн	ое нес	ьтяное (веретень	ное. маниинное. т	іилинлровое и				_
Неорганизованны			,, -	,, . , ,				
При строительно- монтажных работах (6013		0.00	0.0000758	0.000073			
СМР) Итого:		0.00	0.00	0.0000758	0.000073			
Всего по загрязняющему		0.00	0.00	0.0000758	0.000073			
веществу:								
**2752, Уайт-спирит (129	4*)							
Неорганизованны							•	.
При строительно-	6011	0.00	0.00	0.617	1.375542	0.617	1.375542	2023
монтажных работах (СМР)								
Итого:		0.00	0.00	0.617	1.375542	0.617	1.375542	
Всего по загрязняющему веществу:		0.00	0.00	0.617	1.375542	0.617	1.375542	2023
**2754, Алканы C12-19 /в	перес	счете на С/ (Угле	водороды преде	льные C12-C19				
Организованные								
При строительно- монтажных работах (0001	0.00	0.00	0.378611111	0.2593704		0.2593704	
СМР) При строительно-	0002	0.00	0.00	0.378611111	0.2593704	0.378611111	0.2593704	2023
монтажных работах (СМР)	0005		0.00	0.2022222	0.0045	0.70000000	0.0045	2022
При строительно- монтажных работах (0003	0.00	0.00	0.32222222	0.32424	0.32222222	0.32424	2023
СМР) При строительно- монтажных работах (0004	0.00	0.00	0.32222222	0.32424	0.32222222	0.32424	2023
MOTITUMINIA PROOTUA (ı	I						

	Лист
OOC	72

Нормативы выбросов загрязняющих веществ в атмосферу по объектув период проведения строительно-монтажных работ

		4	- 1	c	7	0	١.
	3	4	5	б	/	8	9
0005	0.00	0.00	0.509333333	0.31341	0.509333333	0.31341	2023
0006	0.00	0.00	0.07199784	0.2054232	0.07199784	0.2054232	2023
8000	0.00	0.00	0.07199784	0.2054232	0.07199784	0.2054232	2023
0010	0.00	0.00	0.009	0.020265	0.009	0.020265	2023
0011	0.00	0.00	0.009	0.020265		0.020265	
0012	0.00	0.00	0.0064818	5.863536		5.863536	
0013	0.00	0.00	0.009	0.020265		0.020265	
0014	0.00	0.00	0.509333333	0.31341		0.31341	
	0.00	0.00	2.597810812	8.1292182	1.685384568	8.1292182	
	сточники						
6014	0.00	0.00	0.0007598664	0.001565604		0.001565604	
	0.00	0.00	0.0007598664	0.001565604		0.001565604	
	0.00	0.00	2.5985706784	8.130783804	1.685384568	8.130783804	
		•	-		•		
е и с 6012	сточники 0.00	0.00	0.0052	0.0144	0.0052	0.0144	2023
	0.00	0.00	0.0052	0.0144	0.0052	0.0144	
	0.00	0.00	0.0052	0.0144	0.0052	0.0144	2023
		окись кремния в	%: 70-20 (шамо	Γ			
		0.00	ا، ہ	م ووودا	ا، ج	0.555	Lacas
6002	0.00	0.00	2.4	0.7776	2.4	0.7776	2023
6003	0.00	0.00	2.667	0.922	2.667	0.922	2023
6004	0.00	0.00	0.0699	0.02265	0.0699	0.02265	2023
6005	0.00	0.00	0.0699	0.02265	0.0699	0.02265	2023
	0006 0008 0010 0011 0012 0013 0014 е и с 6014 6012 6002 6003	0005 0.00 0006 0.00 0008 0.00 0010 0.00 0011 0.00 0013 0.00 0014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0005 0.00 0.00 0006 0.00 0.00 0008 0.00 0.00 0010 0.00 0.00 0011 0.00 0.00 0013 0.00 0.00 0014 0.00 0.00 0014 0.00 0.00 0.00 0.00 0.00 0014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0005 0.00 0.00 0.509333333 0006 0.00 0.00 0.07199784 0008 0.00 0.00 0.07199784 0010 0.00 0.00 0.009 0011 0.00 0.00 0.009 0012 0.00 0.00 0.009 0013 0.00 0.00 0.009 0014 0.00 0.00 0.509333333 0.00 0.00 0.5093333333 0.01 0.00 0.00 0.0093333333 0.00 0.00 0.00933333333 0.00 0.00 0.00933333333 0.00 0.00 0.0007598664 0.00 0.00 0.0007598664 0.00 0.00 0.0052 0.00 0.00 0.0052 0.00 0.00 0.0052 0.00 0.00 0.0052 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0005 0.00 0.00 0.509333333 0.31341 0006 0.00 0.00 0.07199784 0.2054232 0008 0.00 0.00 0.0019784 0.2054232 0010 0.00 0.00 0.009 0.020265 0011 0.00 0.00 0.009 0.020265 0012 0.00 0.00 0.009 0.020265 0013 0.00 0.00 0.509333333 0.31341 0014 0.00 0.00 0.5093333333 0.31341 0014 0.00 0.00 2.597810812 8.1292182 6014 0.00 0.00 0.0007598664 0.001565604 0.00 0.00 0.007598664 0.001565604 0.00 0.00 0.0052 0.0144 0.00 0.00 0.0052 0.0144 0.00 0.00 0.0052 0.0144 0.00 0.00 0.0052 0.0144 0.00 0.00 0.0052 0.014	0005 0.00 0.00 0.509333333 0.31341 0.509333333 0006 0.00 0.00 0.07199784 0.2054232 0.07199784 0008 0.00 0.00 0.009 0.020265 0.009 0010 0.00 0.00 0.009 0.020265 0.009 0011 0.00 0.00 0.009 0.020265 0.009 0012 0.00 0.00 0.009 0.020265 0.00 0013 0.00 0.00 0.009 0.020265 0.00 0014 0.00 0.00 0.509333333 0.31341 0.31341 0.00 0.00 0.009 0.020265 0.00 0.00 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.001565604 0.0052 0.0144 0.0052 0.0144 0.0052 0.0144 0.0052 0.00144 0.0052 0.00144 0.0052 0.00144 0.0052 0.00144	0005 0.00 0.00 0.509333333 0.31341 0.509333333 0.31341 0006 0.00 0.00 0.07199784 0.2054232 0.07199784 0.2054232 0008 0.00 0.00 0.009 0.020265 0.009 0.020265 0010 0.00 0.00 0.009 0.020265 0.009 0.020265 0012 0.00 0.00 0.009 0.020265 0.020265 0.020265 0013 0.00 0.00 0.009 0.020265 0.020265 0.020265 0014 0.00 0.00 0.009 0.020265 0.020265 0.020265 0014 0.00 0.00 0.009 0.020265 0.020265 0.020265 0014 0.00 0.00 0.509333333 0.31341 0.31341 0.31341 0.00 0.00 0.00 2.597810812 8.1292182 1.685384568 8.1292182 0.014 0.00 0.00 0.007598664 0.001565604 0.001565604 </td

	Лист
000	73

Нормативы выбросов загрязняющих веществ в атмосферу по объектув период проведения строительно-монтажных работ

1	2	3	4	5	6	7	8	9
СМР) При строительно-	6006	0.00	0.00	0.4	0.389	0.4	0.389	2023
монтажных работах (СМР)								
При строительно- монтажных работах (СМР)	6007	0.00	0.00	1.011	0.3494	1.011	0.3494	2023
При строительно- монтажных работах (СМР)	6008	0.00	0.00	0.000972	0.00021	0.000972	0.00021	2023
При строительно- монтажных работах (СМР)	6016	0.00	0.00	0.00884	1.394		1.394	
Итого: Всего по загрязняющему веществу:		0.00 0.00	0.00 0.00	6.627612 6.627612	3.87751 3.87751	6.618772 6.618772	3.87751 3.87751	2023
**2930, Пыль абразивная			корунд) (1027*)			ļ		
Неорганизованны При строительно- монтажных работах (СМР)	6012	0.00	0.00	0.0034	0.00942	0.0034	0.00942	2023
Итого: Всего по загрязняющему веществу:		0.00 0.00	0.00 0.00	0.0034 0.0034	0.00942 0.00942	0.0034 0.0034	0.00942 0.00942	
Всего по объекту: Из них:		0.00	0.00	24.862245311	24.79866872	20.655134224	24.79859572	
Итого по организованным источникам:	ī	0.00	0.00	17.280782511	19.254709742	17.280782511	19.254709742	
Итого по неорганизованни источникам:	ЫМ	0.00	0.00	7.5814628	5.543958978	7.581387	5.543885978	

Нормируемые выбросы загрязняющих веществ в атмосферу при испытании

Нормативы выбросов загрязняющих веществ в атмосферу по объекту в период проведения испытания

	Но- мер		Нормативы выбросов загрязняющих веществ					
Производство цех, участок	ис- точ- ника	существующ на 202		на 202	23 год	нд	ĮВ	год дос- тиж е
Код и наименование	1	г/с	т/год	г/с	т/год	г/с	т/год	ния
загрязняющего								ндв
вещества	2	3	4	5	6	7	8	9
**0301, Азота (IV) диоксі			-	5	ů l	,	Ū	
Организованные								
в период проведения	0001	0.00	0.00	0.256	1.152	0.256	1.152	2023
испытания								
в период проведения	0002	0.00	0.00	0.256	1.152	0.256	1.152	2023
испытания	0003	0.00	0.00	0.548266667	1.62208	0.548266667	1.62208	2022
в период проведения испытания	0003	0.00	0.00	0.546200007	1.02200	0.546200007	1.02200	2023
в период проведения	0004	0.00	0.00	0.7168	1.62208	0.7168	1.62208	2023
испытания								
Итого:		0.00	0.00	1.777066667	5.54816	1.777066667	5.54816	
, n		0.00	0.00	1 555000000	E E 404.6	1 55500000	E E 404.6	2022
Всего по загрязняющему		0.00	0.00	1.777066667	5.54816	1.777066667	5.54816	2023
<u> </u>	веществу:						l	
Организованные								
в период проведения	0001	0.00	0.00	0.0416	0.1872	0.0416	0.1872	2023
испытания			0.00	0.0.110	0.107	0,0,120	0,10,2	

	Лист
OOC	74

в период проведения	0002	0.00	0.00	0.0416	0.1872	0.0416	0.1872	2023
испытания	0003	0.00	0.00	0.000003333	0.262500	0.089093333	0.263588	2022
в период проведения испытания	0003	0.00	0.00	0.089093333	0.263588	0.089093333	0.263500	2023
в период проведения	0004	0.00	0.00	0.11648	0.263588	0.11648	0.263588	2023
испытания				V.111.1	0.2000	0.110	0.2000	
Итого:		0.00	0.00	0.288773333	0.901576	0.288773333	0.901576	
Всего по загрязняющему веществу:		0.00	0.00	0.288773333	0.901576	0.288773333	0.901576	2023
**0328, Углерод (Сажа, У	 глеро <i>і</i>	Lі т чепный) (583)			1			$\overline{}$
Организованные								
в период проведения	0001	0.00	0.00	0.016666667	0.072	0.016666667	0.072	2023
испытания							I	
в период проведения испытания	0002	0.00	0.00	0.016666667	0.072	0.016666667	0.072	2023
в период проведения	0003	0.00	0.00	0.035694444	0.10138	0.035694444	0.10138	2023
испытания в период проведения	0004	0.00	0.00	0.046666667	0.10138	0.046666667	0.10138	2023
испытания Итого:		0.00	0.00	0.115694445	0.34676	0.115694445	0.34676	
Всего по загрязняющему		0.00	0.00	0.115694445	0.34676	0.115694445	0.34676	2023
веществу:	Щ.			(117)			<u> </u>	Щ
**0330, Сера диоксид (Ан			рнистыи газ, Се	ра (IV) оксид)				
Организованные в период проведения	исто 0001	очники 0.00	0.00	0.04	0.18	0.04	0.18	2023
испытания	0001	0.00	0.00	0.0-	0.10	0.0-	0.10	2023
в период проведения	0002	0.00	0.00	0.04	0.18	0.04	0.18	2023
испытания			-	·	-		I	
в период проведения испытания	0003	0.00	0.00	0.085666667	0.25345	0.085666667	0.25345	2023
в период проведения	0004	0.00	0.00	0.112	0.25345	0.112	0.25345	2023
испытания							I	
Итого:		0.00	0.00	0.277666667	0.8669	0.277666667	0.8669	
Всего по загрязняющему		0.00	0.00	0.277666667	0.8669	0.277666667	0.8669	2023
веществу:	oxdot						<u> </u>	
**0337, Углерод оксид (O			ій газ) (584)					
Организованные			ا م مما	0.00000000	o oacl	0.00000000	0.000	12022
в период проведения	0001	0.00	0.00	0.206666667	0.936	0.206666667	U.936	2023
испытания в период проведения	0002	0.00	0.00	0.206666667	0.936	0.206666667	0 936	2023
испытания	0002	0.00	0.00	0.20000007	0.550	0.20000007	0.550	2023
в период проведения	0003	0.00	0.00	0.442611111	1.31794	0.442611111	1.31794	2023

OOC 75

Нормативы выбросов загрязняющих веществ в атмосферу по объектув период проведения испытания

1	2	3	4	5	6	7	8	9
испытания		3	4	J	U		0	
в период проведения испытания	0004	0.00	0.00	0.578666667	1.31794	0.578666667	1.31794	2023
Итого:		0.00	0.00	1.434611112	4.50788	1.434611112	4.50788	
Всего по загрязняющему веществу:		0.00	0.00	1.434611112	4.50788	1.434611112	4.50788	2023
**0703, Бенз/а/пирен (3,4-	Бензп	шрен) (54)		l		1		-
Организованные								
в период проведения испытания	0001	0.00	0.00	0.0000004	0.00000198	0.0000004	0.00000198	2023
в период проведения испытания	0002	0.00	0.00	0.0000004	0.00000198	0.0000004	0.00000198	2023
в период проведения испытания	0003	0.00	0.00	0.000000857	0.000002788	0.000000857	0.000002788	2023
в период проведения испытания	0004	0.00	0.00	0.00000112	0.000002788	0.00000112	0.000002788	2023
Итого:		0.00	0.00	0.000002777	0.000009536	0.000002777	0.000009536	
Всего по загрязняющему веществу:		0.00	0.00	0.000002777	0.000009536	0.000002777	0.000009536	2023
**1325, Формальдегид (N	Іетана	ль) (609)				•		
Организованные	исто	очники						.
в период проведения испытания	0001	0.00	0.00	0.004	0.018	0.004	0.018	
в период проведения испытания	0002	0.00	0.00	0.004	0.018	0.004	0.018	2023
в период проведения испытания	0003	0.00	0.00	0.008566667	0.025345	0.008566667	0.025345	
в период проведения испытания	0004	0.00	0.00	0.0112	0.025345	0.0112	0.025345	
Итого:		0.00	0.00	0.027766667	0.08669	0.027766667	0.08669	
Всего по загрязняющему веществу:		0.00	0.00	0.027766667	0.08669	0.027766667	0.08669	2023
**2754, Алканы C12-19 /в			водороды преде	льные С12-С19				
Организованные в период проведения	исто 0001	очники 0.00	0.00	0.096666667	0.432	0.096666667	0.432	2023
испытания в период проведения	0002	0.00	0.00	0.096666667	0.432	0.096666667	0.432	2023
испытания в период проведения	0003	0.00	0.00	0.207027778	0.60828	0.207027778	0.60828	2023
испытания в период проведения	0004	0.00	0.00	0.270666667	0.60828	0.270666667	0.60828	2023
испытания Итого:		0.00	0.00	0.671027779	2.08056	0.671027779	2.08056	
Всего по загрязняющему веществу:		0.00	0.00	0.671027779	2.08056	0.671027779	2.08056	2023
Всего по объекту: Из них:		0.00	0.00	4.592609447	14.338535536	4.592609447	14.338535536	
Итого по организованным источникам:	ſ	0.00	0.00	4.592609447	14.338535536	4.592609447	14.338535536	
Итого по неорганизованн источникам:	ым					T		
		I.						

Для оценки влияния выбросов вредных веществ на качество атмосферного воздуха, в соответствии с действующими нормами проектирования, пользуются методом математического моделирования. Моделирование расчета рассеивания загрязняющих веществ в приземном слое атмосферы выполнено с помощью программного комплекса «Эра-Воздух» (версия 3.0), разработанному фирмой «Логос-Плюс» (г. Новосибирск) и рекомендованная к применению в Республике Казахстан.

	Лист
OOC	76

В ПК «ЭРА-Воздух» реализована "Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий" (Приложение 12 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. №221-п (ОНД-86)).

Степень опасности загрязнения атмосферного воздуха характеризуется максимальными значениями концентраций, соответствующих наиболее неблагоприятным условиям для рассеивания загрязняющих веществ (наихудшие метеорологические условия и максимально возможные выбросы).

Значение коэффициента А, зависящего от стратификации атмосферы и соответствующее неблагоприятным метеорологическим условиям, принято в расчетах равным 200 (для Казахстана).

Так как район работ характеризуется относительно ровной местностью с перепадами высот, не превышающими 50 м на 1 км, то поправка на рельеф к значениям концентраций вредных веществ не вводилась (коэффициент рельефа = 1).

Климатические характеристики района расположения проектируемых объектов представлены в таблице 3.5.2.

Таблица 3.5.2 Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере г. Атырау

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности	1.0
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, °С	31,2
Средняя температура наружного воздуха наиболее холодного месяца, °C	-3,3
Среднегодовая роза ветров, %	
С	11
СВ	9
В	23
ЮВ	20
Ю	7
Ю3	9
3	6
C3	15
Среднегодовая скорость ветра, м/с	3,6
Скорость ветра, повторяемость превышения которой по многолетним данным составляет 5%, м/с	9

Расчет рассеивания проведен без учета фоновых концентраций.

При построении карт изолиний от загрязняющих веществ были приняты следующие размеры расчетного прямоугольника составляют: X центра — 3700, Y центра — 2700; высота —7000м, ширина - 6000 м, Заданный шаг расчетной сетки составляет - 100 м.

На период строительства проведен расчет рассеивания загрязняющих веществ по расчетному прямоугольнику.

Расчетный прямоугольник выбран для определения максимальных концентраций загрязняющих веществ от источников выбросов планируемых работ, уточнения зоны воздействия и охватывает непосредственно участки проведения проектируемых работ.

	Лист
OOC [77

Концентрации загрязняющих веществ в атмосфере определены при наихудших для рассеивания выбросов метеорологических условиях на теплый период года и максимально возможных выбросах от оборудования.

Результаты расчетов рассеивания в виде карт-схем изолиний загрязняющих веществ, произведенных по всем вариантам, представлены в Приложении 2. В качестве критерия для оценки уровня загрязнения атмосферного воздуха применялись значения максимально разовых предельно допустимых концентраций (ПДКм.р.) и ориентировочно безопасных уровней воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест. Значения ПДКм.р. и ОБУВ приняты согласно приказу Министра национальной экономики РК «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах» от 28 февраля 2015 года №168.

3.6. Расчеты количества выбросов загрязняющих веществ в атмосферу

По всем источникам (организованным и неорганизованным) были проведены расчеты выбросов загрязняющих веществ в атмосферный воздух и представлены в приложении 1. Расчеты выполнялись в соответствии с нормативными и методическими документами, действующими на территории Республики Казахстан, а также согласно техническим решениям проекта.

Расчеты выбросов загрязняющих веществ произведены на весь период строительства проектируемых объектов.

Применяемые нормативные и методические документы:

- Сборник сметных норм и расценок на эксплуатацию строительных машин. Астана, 2003 г.
- РНД 211.2.02.04-2004. Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. Астана, 2005 г.
- Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОСиВР РК от 12.06.2014 г. №221-ө).
- РНД 211.2.02.05-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). Астана, 2004 г.
- РНД 211.2.02.03-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)». Астана, 2004 г.
- Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- "Временное методическое пособие по расчету выбросов от неорганизованных источников строительных материалов". Новороссийск, 1989.
- Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение № 3 к приказу Министра ООС РК от 18 апреля 2008 г. № 100-п.

3.7. Оценка последствий загрязнения и мероприятия по снижению отрицательного воздействия

В предыдущих разделах дана характеристика природных сред и описаны все возможные потенциальные воздействия при строительстве объектов.

В данном разделе дается комплексная экологическая оценка воздействия работ, предусмотренным проектом. В соответствии с «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденными МООС РК приказом N270-п от 29.10.2010 г., г. Астана, выполнена предварительная оценка воздействия на

	Лист
000	C 78

каждый компонент окружающей среды, затрагиваемый при проведении работ в Атырауской области.

Комплексная оценка воздействия на природные среды осуществляется по следующим критериям: ПРОСТРАНСТВЕННЫЙ МАСШТАБ, ВРЕМЕННОЙ МАСШТАБ, ИНТЕНСИВНОСТЬ ВОЗДЕЙСТВИЯ.

Эти критерии используются для оценки воздействия рассматриваемых работ по каждому природному ресурсу. Проведенные исследования и наблюдения, проведенные в процессе реализации данного раздела – «охраны окружающей среды», позволили сделать выводы по поводу воздействия проводимой деятельности на основные компоненты окружающей среды.

Для комплексной оценки воздействия на окружающую среду был выявлен ряд возможных источников воздействия. Произведена оценка с точки зрения экологического воздействия и значимости этого экологического воздействия. Дана характеристика источников воздействия на окружающую среду. Учтена чувствительность компонентов окружающей среды. Произведен прогноз дальнейшего воздействия.

Атмосферный воздух

Для оценки влияния намечаемой деятельности на атмосферный воздух в период проведения строительно-монтажных работ проведен расчет рассеивания приземных концентраций загрязняющих веществ на территории рабочего прямоугольника и на границе санитарно-защитной зоны. По результатам проведенного расчета рассеивания концентрации загрязняющих веществ составляют менее 1ПДК, что удовлетворяет санитарно-эпидемиологическим требованиям к атмосферному воздуху. Воздействие на атмосферный воздух является допустимым.

После реализации проектных решений стационарные источники выбросов загрязняющих веществ в атмосферный воздух не образуются.

3.8. Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха

Мониторинг за состоянием атмосферного воздуха проводится согласно Программе экологического контроля, разработанной для всего предприятия.

Ввиду кратковременности периода работ при строительстве, контроль за соблюдением нормативов ПДВ необходимо проводить один раз за период работ.

Контроль за состоянием воздушного бассейна предусматривает производство измерений на источниках выбросов загрязняющих веществ. Контроль за выбросами загрязняющих веществ на источниках загрязнения атмосферы на объектах, выполняется:

- для основных стационарных организованных источников инструментальный либо инструментально-лабораторный с проведением прямых натурных замеров;
- для всех остальных источников расчетный.

Контроль за соблюдением установленных величин ПДВ должен осуществляться в соответствии с рекомендациями РНД 211.2.02.02-97 и РНД 211.3.01.06-97. Различают 2 вида контроля: государственный и производственный.

Ответственность за организацию контроля и своевременную отчетность по результатам возлагается на администрацию предприятия. Результаты контроля заносятся в журналы учета, включаются в технические отчеты предприятия и учитываются при оценке его деятельности.

3.9. Мероприятия по регулированию выбросов при неблагоприятных метеорологических условиях (НМУ)

Уровень загрязнения приземных слоев атмосферы во многом зависит от метеорологических условий. В некоторых случаях метеорологические условия способствуют накоплению загрязняющих веществ в районе расположения объекта, т.е. концентрации примесей могут

ООС 79		
OOC 79		Лист
	OOC	79

резко возрасти. Для предупреждения возникновения высокого уровня загрязнения осуществляются регулирование и кратковременное сокращение выбросов загрязняющих веществ.

Неблагоприятными метеорологическими условиями при строительных работах могут быть:

- пыльные бури,
- штормовой ветер,
- штиль,
- температурная инверсия,
- высокая относительная влажность (выше 70%).

Любой из этих неблагоприятных факторов может привести к внештатной ситуации, связанной с риском для жизни обслуживающего персонала и нанесением вреда окружающей природной среде. Поэтому необходимо в период НМУ (в зависимости от тяжести неблагоприятных метеорологических условий) дополнительно предусмотреть мероприятия, которые не требуют существенных затрат и носят организационно-технический характер. В целях минимизации влияния неблагоприятных метеорологических условий на загрязнение окружающей природной среды на предприятии должен быть разработан технологический регламент на период НМУ, обслуживающий персонал обучен реагированию на аварийные ситуации.

000	Лист
OOC	80

4.ОЦЕНКА ВОЗДЕЙСТВИЯ ЗА СОСТОЯНИЕМ ВОД

Основным критерием загрязнения водных источников области является качество воды и степень ее пригодности для питьевых и хозяйственных нужд. Качество воды оценивается по физическим, химическим и санитарным показателям и, в первую очередь, значениям предельно допустимых концентраций (ПДК) загрязняющих веществ для водоемов хозяйственно-питьевого, коммунального и рыбохозяйственного водопользования.

4.1 Потребность в водных ресурсах для намечаемой деятельности

Во время проведения строительных работ предусматривается потребление воды на следующие нужды:

- хозяйственно-питьевые нужды;
- производственные нужды (на пылеподавление и прочих производственных нужд).

4.2. Характеристика источника водоснабжения

Данный раздел рассматривает вопросы водопотребления и водоотведения при строительных работах.

Все решения по водоснабжению и водоотведению разработаны в соответствии с нормами, правилами, стандартами и соответствующими нормативными документами Республики Казахстан.

Для хозяйственно-питьевых и технических нужд используется привозная вода. Доставка воды производится автотранспортом, соответствующим документам государственной системы санитарно-эпидемиологического нормирования.

Привозная вода хранится в отдельном помещении или под навесом в емкостях, установленных на площадке с твердым покрытием. Емкости для хранения воды изготавливаются из материалов, разрешенных к применению для этих целей на территории Республики Казахстан.

Чистка, мытье и дезинфекция емкостей для хранения и перевозки привозной воды производится не реже одного раза в десять календарных дней и по эпидемиологическим показаниям.

Внутренняя поверхность механически очищается, промывается с полным удалением воды, дезинфицируется. После дезинфекции емкость промывается, заполняется водой и проводится бактериологический контроль воды. Для дезинфекции применяются дезинфицирующие средства, разрешенные к применению в Республике Казахстан

Машинисты землеройных и дорожных машин, крановщики и другие обеспечиваются индивидуальными флягами для питьевой воды.

Вода, используемая для питьевых и хозяйственно-бытовых нужд, соответствует документам государственной системы санитарно-эпидемиологического нормирования.

4.3. Поверхностные воды

Гидрографическая сеть описываемого района относится к бассейну Каспийского моря и образует постоянные, пересыхающие и временные водотоки. Современная речная сеть с постоянным поверхностным стоком очень редка при сравнительно большой густоте овражной сети с временным стоком. Гидрографическая сеть в целом была сформирована в дочетвертичное и древнечетвертичное время (в период каспийских трансгрессий).

Основными источниками питания рек являются талые снеговые воды, вследствие чего большая часть годового стока (65-93%), а нередко весь его объем (временные водотоки) приходится на весенний период. Ввиду относительно небольшого углубления русла рек, доля подземного питания их незначительна — не более 5-10% годового стока. Подземный сток играет существенную роль в жизни рек: зимой, летом и иногда осенью он является единственным источником питания рек. Зимой эти воды расходуются на льдообразование.

	Лист
OOC	81

На территории участка часто встречаются соровые понижения линейного и блюдцеобразного типа, расположенные между песчаными грядами. В весенний период, при поднятии уровня грунтовых вод, соры наполняются водой. В летний период, за счет температурного режима испаряемость максимальная, соры, в большинстве случаев, пересыхают. Уровень воды в сорах определяется исключительно местными условиями формирования. На территории имеются временные водотоки, которые в меженный период полностью пересыхают.

4.4. Подземные воды

Воздействие на подземные воды не предполагается.

4.5. Расчет водопотребления и водоотведения

Система водоотведения санитарно-бытовых помещений строительных площадок осуществляется путем устройством надворного туалета с водонепроницаемой выгребной ямой и мобильных туалетных кабин "Биотуалет".

Выгребная яма очищается при заполнении не более чем на две трети объема. По завершению строительства объекта, после демонтажа надворных туалетов проводятся дезинфекционные мероприятия.

Вода, использованная на пылеподавление, относится к безвозвратным потерям.

Расчет водопотребления на хозяйственно-питьевые нужды в период строительства.

Нормы водоотведения сточных вод, образованных от жизнедеятельности рабочего персонала, приняты равными нормам водопотребления, согласно СНиП РК 4.01-101-2012 г. «Внутренний водопровод и канализация зданий» (с изменениями и дополнениями по состоянию на 25.12.2017 г.).

Для расчета потребности в воде на период проведения строительных работ использованы следующие показатели:

Нормы, используемые для расчета:

Хозяйственно-бытовые нужды – 25 л/сутки или 0,025 м3/сутки на 1 человека.

Количество персонала, задействованного во время строительства – 30 человек.

Время проведения строительно-монтажных работ –33 дня.

<u>Расчет потребности воды для хозяйственно-бытовых</u> нужд

	Цикл	Количество,	Норма	Водопот	ребление	Водоот	гведение
Потребитель	строительство		водопотреб- ление, м ³	м ³ /сут.	м ³ /год	м ³ /сут.	м ³ /год
хоз-бытовые нужды	33	30	0,025	0,75	24,75	0,75	24,75
Вода техническая (приготовление бур.раствора, цементирования)				17,32	662,17	-	-
Всего		30		18,07	686,92	0,75	24,75

Баланс водопотребления и водоотведения на период проведения строительно-монтажных работ представлен в таблице 4.5.2.

ООС 82		
OOC 82		Лист
	OOC	82

Таблица 4.5.2 Баланс водопотребления и водоотведения в период строительно-монтажных работ

				Водопотре	ебление, тыс.м	3/сут.	Водоотведение, тыс.м3/сут.												
										На производо	ственные ну	жды	TT-			05			
Производство	Всего	Свежая вода			Повторно-	На хозяйственно	Безвозвратное		Объем сточной волы	Производственные	Хозяйственно	Примечани							
производенно в сег	Decro	всего	в т.ч. питьевого качества	Оборотная вода	используемая вода	ć	потребление	Bcero	повторно используемой	сточные воды	–бытовые сточные воды	e							
1	2	3	4	5	6	7	8	9	10	11	12	13							
Питьевые и технические нужды	0,01807					0,00075	0,01732	0,00075			0,00075	Подрядная организация согласно							
Всего	0,01807					0,00075	0,01732	0,00075			0,00075	договора							

		Водопотребление, тыс.м3/пер.							Водоотведение, тыс.м3/пер.						
								На производо	ственные ну	жды	TT-			05	
Производство	Всего	Свежая вода		Свежая вода		вода	Повторно-	На хозяйственно	Безвозвратное		Объем сточной волы	Производственные	Хозяйственно	Примечани	
производено	Decro	всего	в т.ч. питьевого качества	Оборотная вода	используемая вода	–бытовые нужды	потребление	Всего	повторно используемой	сточные воды	–бытовые сточные воды	e			
1	2	3	4	5	6	7	8	9	10	11	12	13			
Питьевые и технические нужды	0,68692					0,02475	0,66217	0,02475			0,02475	Подрядная организация согласно			
Всего	0,68692					0,02475	0,66217	0,02475			0,02475	договора			

ООС 83

4.6. Оценка воздействия на поверхностные воды в период строительства

При строительных работах изъятие воды из поверхностных источников для технических и хозяйственных нужд не планируется. Сброс сточных вод в поверхностные водоемы и на рельеф местности не предусматривается, разработка проекта ПДС не требуется.

4.7. Водоохранные мероприятия

Для соблюдения мер по предостережению загрязнения водных ресурсов необходимо реализация следующих действий:

- контроль за техническим состоянием транспортных средств, исключающий утечки горюче-смазочных материалов;
- регламентация проведения работ, связанных с загрязнением рельефа;
- потенциально опасные жидкие вещества должны храниться в местах с гидроизолированной поверхностью.

5. ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА

Недра — часть земной коры, расположенная ниже почвенного слоя либо с выходами полезных ископаемых на поверхность, а при отсутствии почвенного слоя - ниже земной поверхности и дна морей, озер, рек и других водоемов, простирающаяся до глубин, доступных для проведения операций по недропользованию с учетом научно-технического прогресса.

При реализации проекта непосредственное воздействие на недра не предполагается.

6. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

Этап строительства будет сопровождаться образованием, накоплением и удалением отходов производства и потребления, которые могут стать потенциальными источниками воздействия на окружающую среду.

Отходы - любые вещества, материалы или предметы, образовавшиеся в процессе производства, выполнения работ, оказания услуг или в процессе потребления (в том числе товары, утратившие свои потребительские свойства), которые их владелец прямо признает отходами либо должен направить на удаление или восстановление в силу требований закона или намеревается подвергнуть, либо подвергает операциям по удалению или восстановлению.

Отходы производства (производственные отходы) – остатки сырья, материалов, веществ, изделий, предметов, образовавшиеся в процессе производства продукции, выполнения работ (услуг) и утратившие полностью или частично исходные потребительские свойства.

Отходы потребления - продукты и (или) изделия, образующиеся в результате жизнедеятельности человека, полностью или частично утратившие свои потребительские свойства, их упаковка и иные вещества или их остатки, срок годности либо эксплуатации которых истек независимо от их агрегатного состояния, а также от которых собственник самостоятельно физически избавился либо документально перевел в разряд отходов потребления.

В соответствии с Экологическим кодексом РК под владельцем отходов понимается образователь отходов или любое лицо, в чьем законном владении находятся отходы. Образователем отходов признается любое лицо, в процессе осуществления деятельности которого образуются отходы (первичный образователь отходов), или любое лицо, осуществляющее обработку,

	лист
OOC	84

смешивание или иные операции, приводящие к изменению свойств таких отходов или их состава (вторичный образователь отходов).

Субъекты предпринимательства, являющиеся образователями отходов, несут ответственность за обеспечение надлежащего управления такими отходами с момента их образования до момента передачи в соответствии с пунктом 3 статьи 339 Экологического Кодекса РК во владение лица, осуществляющего операции по восстановлению или удалению отходов на основании лицензии.

Для удовлетворения требований Республики Казахстан по недопущению загрязнения окружающей среды должна проводиться политика управления отходами, которая позволит минимизировать риск для здоровья и безопасности работников, и окружающей природной среды. Система управления отходами контролирует безопасное размещение различных типов отходов.

Одними из основополагающих принципов в области управления и обращения с отходами производства и потребления должны быть:

- •ответственность за обеспечение охраны компонентов окружающей среды (воздух, подземные воды, почва) от загрязнения отходами производства и потребления0;
- •организация всех строительных и эксплуатационных работ, исходя из возможности повторного использования, утилизации, регенерации, очистки или экологически приемлемого удаления отходов производства и потребления;
- •сокращение негативного воздействия на окружающую среду за счет использования технологий и оборудования, позволяющих уменьшить образование отходов;
- •приоритет принятия предупредительных мер над мерами по ликвидации экологических негативных воздействий отходов производства и потребления на окружающую среду.

Все отходы производства и потребления подлежат временному хранению в специальных контейнерах на специально отведенных местах производственного объекта, с последующим вывозом на утилизацию, переработку, обезвреживание и размещение отходов согласно договору, со специализированной организацией, имеющей лицензию на выполнение данных операций.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Временное складирование отходов разрешается на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению. (Экологический кодекс РК, статья 320 п.2).

Перечень отходов производства и потребления определен в соответствии со спецификой проведения работ, нормативными документами, действующими в РК, в соответствии с Классификатором отходов, утверждённым приказом И. о. министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Степень влияния группы отходов на экосистему зависит от вида отходов, класса опасности, количества, времени и характера захоронения или утилизации отходов.

Под видом отходов понимается совокупность отходов, имеющих общие признаки в соответствии с их происхождением, свойствами и технологией управления ими.

В соответствии со ст. 338 ЭК РК виды отходов определяются на основании <u>классификатора отходов</u>, утвержденного приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Классификатор отходов определяет вид отходов с учетом происхождения и состава каждого вида отходов и в необходимых случаях определяет лимитирующие показатели концентрации опасных веществ в целях их отнесения к опасным или неопасным.

	Лист
OOC	85

Каждый вид отходов в классификаторе отходов идентифицируется путем присвоения шестизначного кода.

Виды отходов относятся к опасным или неопасным в соответствии с классификатором отходов с учетом требований Экологического Кодекса.

Отдельные виды отходов в классификаторе отходов могут быть определены одновременно как опасные и неопасные с присвоением различных кодов («зеркальные» виды отходов) в зависимости от уровней концентрации содержащихся в них опасных веществ или степени влияния опасных характеристик вида отходов на жизнь и (или) здоровье людей и окружающую среду.

Отнесение отходов к опасным или неопасным и к определенному коду классификатора отходов производится владельцем отходов самостоятельно.

Для определения класса опасности отходов, которые Экологическим Кодексом не регламентируются, использованы Санитарные Правила "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" (Приказ и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020.).

6.1. Виды и масса отходов, образующихся в процессе строительства. Особенности загрязнения территории отходами производства и потребления (опасные свойства и физическое состояние отходов)

Предварительные виды и характеристика образующихся отходов производства и потребления.

Буровой шлам (БШ) – выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием. Буровой шлам по минеральному составу нетоксичен. Удельная плотность бурового шлама в среднем равна 2,1 т/м³, при соприкосновении с отработанным буровым раствором происходит разбухивание выбуренной породы согласно РНД 03.1.0.3.01-96 и удельная плотность уменьшается на величину коэффициента разбухания породы 1,2, тогда плотность бурового шлама равна: 2,1:1,2=1,75 т/м³.

Код отхода 010505*. Классификация отхода- опасные отходы

Согласно планируемому техническому заданию и договору с компанией, осуществляющей бурение скважин, буровой шлам - собирается в специальных металлических контейнерах, с приемной емкости буровой установки сразу же грузится на автотранспорт подрядчика и вывозится за пределы контрактной территории Компании. Временное хранение не предусмотрено.

Отработанный буровой раствор (ОБР) — один из видов отходов при бурении скважины. О загрязняющей способности отработанного бурового раствора судят по содержанию в нем нефти и органических примесей, оцениваемых по показателю ХПК, по значению водородного показателя рН и минерализации жидкойфазы. Именно эти показатели свидетельствуют о том, что ОБР является опасным среди других отходов бурения загрязнителем окружающей природной среды. Плотность бурового раствора согласно тех проекту 1,45 т/м3.

Код отхода 010505*. Классификация отхода- опасные отходы

Согласно планируемому техническому заданию и договору с компанией, осуществляющей бурение скважин, отработанный буровой раствор - собирается в специальных металлических контейнерах, с приемной емкости буровой установки сразу же грузится на автотранспорт подрядчика и вывозится за пределы контрактной территории Компании. Временное хранение отходов не предусмотрено.

Буровые сточные воды (БСВ)— по своему составу являются многокомпонентными суспензиями, содержащими до 80% мелкодисперсных примесей, обеспечивает высокую агрегатную устойчивость. Загрязняющие вещества, содержащиеся в буровых сточных водах, подразделяются на взвешенные, растворимые органические примеси и нефтепродукты.

Код отхода 010506*. Классификация отхода- опасные отходы

	Лист
OOC	86

Согласно планируемому техническому заданию и договору с компанией, осуществляющей бурение скважин, буровые сточные воды - собираются в специальных металлических контейнерах, с приемной емкости буровой установки сразу же грузятся на автотранспорт подрядчика и вывозятся за пределы контрактной территории Компании. Временное хранение отходов не предусмотрено.

Коммунальные отходы (Твёрдые бытовые отходы) образуются в процессе производственной деятельности работающего персонала.

Сбор коммунальных отходов производится в металлические контейнеры (V=1,5 м3) с герметичной крышкой, распложенные в местах образования отходов.

Сбор и вывоз согласно заключенному договору.

Согласно Приказу и.о Министра здравоохранения Республики, Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» - Срок хранения коммунальных отходов в контейнерах при температуре 0°С и ниже допускается не более трех суток, при плюсовой температуре не более суток.

Код отхода 200108. Классификация отхода- не опасные отходы

Промасленнаяветошь образуетсявпроцессеиспользованиятряпьядляпротиркимеханизмов, деталей, станкови машин.Промасленная ветошь относится к твердым,пожароопасным,невзрывоопасным и водонерастворимым отходам.ветошць содержит до5%нефтепродуктов.Промасленнаяветошьсобираетсявспециальныеконтейнерыивывозитсянаполиг он.

Код отхода 15 02 02* Классификация отхода – опасные отходы.

Металлолом образуется в процессе технического обслуживания транспортных средств и технологического оборудования и их демонтажа. При плановой или аварийной замене запасных частей.

Собирается на площадке S=20м² для временного складирования металлолома. По мере накопления вывозятся подрядной организацией. Срок хранение не более 3 мес.

Код отхода 020110. Классификация отхода-не опасные отходы

Огарки сварочных электродов образуются в результате применения сварочных электродов при сварочных работах. Состав отхода (%): железо - 96-97; обмазка (типа Ti(CO)) - 2-3; прочие - 1.

Собираются в специальные контейнеры (V=0,016м3), установленные в местах проведения сварочных работ, хранятся на территории предприятия (склад S-20_M2) согласно продолжительности работ (160 суток), по мере завершения работ, вывозятся согласно заключенному договору со специализированной организацией.

Код отхода 120113. Классификация отхода-не опасные отходы

Предварительный расчет объема отходов при строительстве скважины

Интервал	k ₁	π	Дд, м	\mathbf{R}^2 , M	L, глубина интервала	$V_{\mathfrak{m}}$ м 3	
0-40	1,2	3,14	0,3397	0,1699	40	25,607328	
40-500	1,1	3,14	0,2445	0,1223	500	211,2121	
500-1650	1,15	3,14	0,1778	0,0889	1650	529,679553	
BCEΓO V _n :							

Метод расчета объемов образования отходов производства

Суммарный объем выбуренной породы всей скважины рассчитывают по формуле:

$$V_{\pi} = \sum V_{\pi, \text{HML}}, \qquad M^3 \qquad (1)$$

где Vп.инт. – объем выбуренной породы интервала скважины, м3.

$$V_{\text{п.инт.}} = K_1 \times \pi \times R^2 \times L, \qquad M^3$$
 (2)

где K_1 – коэффициент кавернозности (величина кавернозности, выраженная отношением объемов всех пустот в определенном объеме породы к данному объему породы);

R – радиус интервала скважины, м; R=D/2 (D диаметр интервала скважины согласно тех. проекту) ;.

L – глубина интервала скважины, м.

	Лист
OOC	87

Объем бурового шлама определяется по формуле:

$$V_{\text{m}} = V_{\text{n}} * 1,2, \text{ M}^3$$

 $V_{\text{m}} = 766,498981 * 1,2 = 919,7987772 \text{ M}^3$

где 1,2 - коэффициент, учитывающий разуплотнение выбуренной породы, может изменяться с учетом особенностей геологического разреза и обосновывается расчетами

Масса бурового шлама рассчитывается по формуле:

$$M_{\text{III}}=V_{\text{III}}*\rho$$

где ρ - объемный вес бурового шлама, т/м3.

$$M_{\text{III}} = 919,7987772 * 1,75 = 1609,64786 \text{ T}.$$

Объем отработанного бурового раствора рассчитывается по формуле:

$$V_{OBP}=1,2 * V_{II} * K_1+0,5 * V_{II}, M^3$$

где K1 - коэффициент, учитывающий потери бурового раствора, уходящего со шламом при очистке на вибросите, пескоотделителе и илоотделителе (в соответствии с [1], K1=1,052);

Vц - объем циркуляционной системы буровой установки, м3. Объем циркуляционной системы буровой установки определяется в соответствии с паспортными данными установки (Vц = 90 m^3);

при повторном использовании бурового раствора 1,2 заменяется на 0,25, согласно тех проекту буровой раствор повторно использоваться не будет.

$$V_{OBP}$$
= 1,2 * 766,498981* 1,052+0,5 * 90 =1012,628314 M^3

Масса отработанного бурового раствора рассчитывается по формуле:

$$M_{OBP} = V_{OBP} * \rho$$
,

где ρ - удельный вес отработанного бурового раствора, т/м³.

$$M_{OBP} = 1012,628314 * 1,45 = 1468,311055 \text{ T.}$$

Объем буровых сточных вод ($V_{\text{БСВ}}$) рассчитывается согласно нижеследующей формуле:

$$V$$
бсв = $2 \times V$ обр

Для 1 скважины

Vбсв =2 * 1012,628314 =2025,256627м3

Масса сброса загрязняющего вещества в отводимых буровых сточных водах определяется по формуле:

$$M_i = V_{BCB} \times Ci \times 10^{-6}$$
, T.

где Ci — концентрация i-го загрязняющего вещества согласно составу отводимых сточных вод, г/м3. Ориентировочно концентрация равна **68,75 кг/м** $^3 \approx 68750$ г/м 3

$$M_{i1ckb}$$
 = 2025,256627 *68750 *10⁻⁶ = 139,2363931 T

Коммунальные отходы (Твердо-бытовые отходы)

Количество коммунальных отходов (Твёрдые бытовые отходы) определяется по формуле: Qтбо = P * M * N,

где:

Р – норма накопления отходов на 1 чел в год, 0,3 м3/чел;

 ρ – плотность отхода, 0,25 т/м3,

P = 0.3 м3/чел*0.25 т/м3 = 0.075 т/год; 0.075 т/год / 365 = 0.000205 т/сут

М – численность работающего персонала, 30чел;

N – время работы, 33 сут;

Qтб0 = 0,0002055 т/сут* 30чел*33суток = 0,203445 т/год

Количество промасленной ветоши

Количество промасленной ветоши определяется по формуле:

$$N = M_0 + M + W,$$

где: N – количество промасленной ветоши, т/год;

 M_{o} – поступающее количество ветоши, 0,12 т/год;

М – норматива содержания в ветоши масел, т/год;

$$M = 0.12 * M_0$$

	Лист
000	88

W – норматива содержания в ветоши влаги, т/год.

$$W = 0.15 * M_0$$

Количество промасленной ветоши в году:

$$N = 0.12 + 0.0144 + 0.018 = 0.1524$$
 т/год

Огарки сварочных электродов

$$N = M_{ocm} * \alpha$$
,

где: $M_{\text{ост}}$ - расход электродов, 0,1 т/год;

α- остаток электрода, 0,015.

$$N = 0.1*0.015 = 0.0015$$
 т/год.

Металлолом

Металлолом транспортных средств

Количество металлолома, образующегося в процессе ремонта транспортных средств, определяется по формуле:

$$N_n = n * \alpha * M$$
,

где: $N_{\mbox{\tiny л}}$ – количество лома черных металлов, т/год;

n – количество автотранспортных средств грузовые – 9 ед.:

α – коэффициент образования лома:

- грузовой транспорт – 0,016.

М – масса металла на единицу транспорта, т:

- грузового – 4,74.

$$N_{\pi} = 9*0,016*4,74 = 0,7584 \text{ т/год}$$

Таблица 1.9.2 - **Перечень, характеристика и масса отходов производст**ва и потребления при проведении работ суммарно

	-J			
№ п/п	Вид отхода	Код отхода	Классификация отхода	При бурении скважины БОР-5., т/год
1	Буровой шлам	010505*	Опасные отходы	1609,64786
2	Отработанный буровой раствор	010505*	Опасные отходы	1468,311055
3	Коммунальные отходы (Твёрдые бытовые отходы)	200108	Неопасные отходы	0,203445
4	Промасленная ветошь	150202*	Опасные отходы	0,1524
5	Огарки электродов	120113	Неопасные отходы	0,0015
6	Металлолом	19 12 02	Неопасные отходы	0,7584

Реализация намечаемой деятельности неизбежно будет сопровождаться образованием, накоплением и утилизацией производственных отходов и отходов потребления.

Масса образования отходов определяется технологическим регламентом, сроком службы расходных материалов, которые после истечения определённого времени превращаются в отходы производства. Отходы будут образуются в процессе строительства.

В соответствии с Экологическим кодексом РК №400-VI от 02.01.2021 г. виды отходов определяются на основании <u>классификатора отходов</u>, утвержденного уполномоченным органом в области охраны окружающей среды (далее - классификатор отходов).

Виды отходов относятся к опасным или неопасным в соответствии с классификатором отходов.

Отдельные виды отходов в классификаторе отходов могут быть определены одновременно как опасные и неопасные с присвоением различных кодов («зеркальные» виды отходов) в зависимости от уровней концентрации содержащихся в них опасных веществ или степени влияния опасных характеристик вида отходов на жизнь и (или) здоровье людей и окружающую среду.

Отнесение отходов к опасным или неопасным и к определенному коду классификатора отходов в соответствии производится владельцем отходов самостоятельно.

Расчет образования производственных отходов и отходов потребления произведён в соответствии с действующими нормативными документами.

	Лист
000	89

6.2. Рекомендации по управлению отходами

Предельное количество временного накопления отходов определяется с учётом токсичности отхода, их общей массы, ёмкостью контейнеров для каждого вида отходов и грузоподъёмностью транспортных средств, используемых для транспортировки отходов на полигоны и предприятия для вторичного их использования или переработки.

На площадке строительства проектируемого объекта должны быть организованы места для хранения (накопления) отходов, откуда они по мере накопления вывозятся по договору на предприятия, осуществляющие переработку, использование, обезвреживание или захоронение отходов. При организации мест хранения (накопления) отходов приняты меры по обеспечению экологической безопасности. Обеспечение мест хранения (накопления) проведено с учетом класса опасности (маркировано по типу отхода), физико-химических свойств, реакционной способности образующихся отходов, а также с учетом требований соответствующих ГОСТов и СНИП.

Необходимость организации собственных полигонов для хранения отходов в период строительства отсутствует. Все отходы временно хранятся в контейнерах или специально отведенных местах не более 6 месяцев. Проект нормативов размещения отходов не разрабатывался, нормативы не устанавливались.

Контроль за образованием отходов ведётся по рабочей документации предприятия.

Влияние отходов производства и потребления на природную среду будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических и экологических норм, направленных на минимизацию негативных последствий антропогенного вмешательства в окружающую среду. Потенциальная направленность негативного воздействия отходов может проявляться при несоблюдении надлежащих требований, а также в результате непредвиденных ситуаций на отдельных стадиях сбора, хранении, либо утилизации отходов производства и потребления.

Образование отходов, во время эксплуатации проектируемых объектов, не предусмотрено.

Образование отходов В данном разделе рассматривается образование отходов при строительстве. Этапы технологического цикла отходов

- Металлолом и огарки сварочных электродов образуются при строительно-монтажных работах, при сварочных работах.
 - Тара из-под ЛКМ образуются при лакокрасочных и других работах.
- Коммунальные отходы (Твёрдые бытовые отходы) и пищевые отходы образуются в результате жизнедеятельности работающего персонала.

Сбор или накопление

- Металлолом собирается в отведенном месте на площадке или вывозится сразу на площадку для металлолома.
 - Огарки сварочных электродов собираются в металлические контейнеры на площадке.
- Отходы тары из-под ЛКМ собираются в специальных контейнерах, размещаемых на отведенных местах на площадке.
- Коммунальные отходы (Твёрдые бытовые отходы) собираются в специальных контейнерах, размещаемых на отведенных местах на площадке.

Идентификация

• Отходы, образующиеся при строительстве, по признакам, параметрам, показателям соответствуют их описанию.

Сортировка (с обезвреживанием)

- Металлолом отбирается пригодный для повторного использования, непригодный смешивается, огарки сварочных электродов собираются отдельно.
 - Отходы тары из-под ЛКМ собираются отдельно.
- Коммунальные отходы (Твёрдые бытовые отходы) при образовании бумажные отходы (макулатура) по мере возможности отделяются от общих коммунальных отходов (Твёрдые

	Лист
000	90

бытовых отходов).

Паспортизация

• В соответствии с требованиями Экологического кодекса паспорта составляются на опасные отходы и неопасные отходы. Паспорта опасных отходов должны быть зарегистрированы в территориальном управлении ООС в течение 3-х месяцев с момента образования отходов по их фактическим объемам.

Упаковка (и маркировка)

Для безопасной транспортировки отходов предусматривается их упаковка, укладка в тару, емкости.

- Металлолом грузится в грузовой транспорт без упаковки, огарки сварочных электродов в ящике.
 - Отходы тары из-под ЛКМ пакуются отдельно и маркируются.
 - Коммунальные отходы (Твёрдые бытовые отходы) уплотняется в спецавтомашинах.

Транспортирование

Вывоз всех отходов будет производиться автотранспортом компаний (мусоровозы, бункеровозы/автоплатфомы согласно договорам.

Временное складирование отходов, образовавшихся при строительстве, предусматривается в специально отведенных местах на \площадке.

Хранение

На площадке все отходы временно хранятся в специально отведенных местах до их вывоза для утилизации и захоронения.

- Металлолом хранится на площадке открытым способом, огарки сварочных электродов в контейнере под навесом.
 - Отходы тары из-под ЛКМ хранятся в специальных емкостях.
- Коммунальные отходы (Твёрдые бытовые отходы) хранение в контейнерах по 1 м³ каждый на специальной бетонированной площадке. Контейнеры плотно закрываются крышками и периодически обрабатываются для уничтожения возможных паразитов и болезнетворных организмов. Контейнеры имеют соответствующую маркировку: «для мусора».

Удаление (утилизация)

- Металлолом сдача по договору на спецпредприятия на переработку.
- Огарки сварочных электродов сдача по договору на спецпредприятия на переработку.
 - Отходы тары из-под ЛКМ сдача по договору на спецпредприятия.
- Коммунальные отходы (Твёрдые бытовые отходы) вывоз на захоронение по договору.

6.3. Виды и количество отходов производства и потребления

В результате строительно-монтажных работ образуется 3 вида отходов.

Подрядная строительная компания самостоятельно осуществляет вывоз всех образующихся отходов производства и потребления в места утилизации/переработки или захоронения согласно заключенным договорам со сторонними специализированными организациями.

Нормируемое количество опасных и не опасных отходов, образующихся во время строительномонтажных работ приведены в таблице 6.4.1.

Таблица 6.4.1

Лимиты накопления отходов на 2023 год.

Наименование отходов Объем накопления отходов на существующее положение т/год Т/год

OOC 91

1	2	3
	На период строительства	
Всего		3079,07466
в т.ч. отходов производства		3078,871215
отходов потребления		0,203445
	Опасные	
Буровой шлам 01 05 05*		1609,64786
Отработанный буровой раствор 01 05 05*		1468,311055
Промасленная ветошь 15 02 02*		0,1524
	Неопасные	
Коммунальные отходы (Твёрдые бытовые отходы) 20 03 01		0,203445
Огарыши сварочных электродов 12 01 13		0,0015
Металлолом 19 12 02		0,7584

7. ОЦЕНКА ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

К физическим воздействиям относятся: шум, вибрация, электромагнитные поля, ионизирующее излучение радиоактивных веществ, тепловое излучение, ультрафиолетовое и видимое излучения, возникающие в результате хозяйственной деятельности.

Перечень источников физических воздействий и их характеристики определяется для проектируемых объектов на основе проектной информации, уровни физических воздействий на стадии проектирования определяются расчетным методом.

7.1. Оценка возможного шумового воздействия

Стадия строительства включает широкий спектр деятельности, включая земляные работы. Уровни шума, создаваемого строительным оборудованием, значительно различаются в зависимости от таких факторов как тип, модель, размер и состояние оборудования, график выполнения работ, состояние территории, на которой проходят работы. Кроме ежедневных изменений в работах, основные строительные объекты выполняются в несколько различных этапов. Каждому этапу соответствует определенный набор оборудования в зависимости от выполняемой работы. Большинство строительных работ выполняются в течение дня, когда шум переносится лучше в результате маскирующего эффекта фонового шума. Уровни шума в ночное время, вероятно, будут снижаться до фоновых уровней проектного участка. Строительные работы продолжаются в течение короткого периода и их потенциальное воздействие будет носить временный и периодический характер.

Средние уровни шума для обычного строительного оборудования находятся в пределах от 74 дБ(A) до 85 дБ(A) (бульдозера). В целом, основным источником шума, исходящего от большинства строительного оборудования, является дизельный двигатель, который постоянно работает в пределах фиксированного расположения или в условиях ограниченного перемещения. Это особенно касается тех случаев, когда дизельный двигатель имеет плохой глушитель. К источникам постоянного шума относятся промысловые компрессоры, бульдозеры, и экскаваторы. Уровни шума

	Лист
OOC	92

для обычного строительного оборудования, которое будет использоваться на площадке, находятся в пределах от 80 до 90 дБ(A) на расстоянии 15 м, как указано в таблице 19. Для общей оценки воздействия строительства можно допустить, что только два из наиболее шумных видов оборудования будут работать одновременно. Допуская только геометрическое распространение (т.е. уменьшение приблизительно на 6 дБ при увеличении вдвое расстояния от точки источника шума) и 8- часовой рабочий день, исходя из уровней шума, представленных в таблице 25, согласно оценкам, при одновременной работе двух наиболее шумных видов оборудования с максимальной нагрузкой, уровни шума будут превышать 55 дБ (A) на расстоянии около 500 м. Это расстояние можно сократить, если принять во внимание соответствующие факторы снижения шума (например, эффект поглощения воздухом и землей благодаря рельефу и растительности) и рабочие нагрузки.

Таблица 7.1. Уровни шума, создаваемого обычным строительным оборудованием на различных расстояниях

	1						
	Уровень шума Leq(1-h) ^а на расстоянии[дБ(A)						
Строительное оборудование	15 м	75 м	150 м	300 м	750 м	1500 м	
Бульдозер	85	71	65	59	45	45	
Экскаватор	82	72	68	56	42	42	
Грузовик	88	74	62	62	48	48	

 $Leq(1-h)^a$ равен уровню установившихся звуковых колебаний, который содержит тот же уровень меняющегося звука в течение1 часа.

Движения транспорта на дороге также может иметь значительное воздействие в виде шума. Оно включает ввоз на строительную площадку и вывоз с нее материалов. Уровни возникающего при этом шума будут быстро увеличиваться и уменьшаться. Количество рейсов грузовиков в связи со строительством будет меняться, в зависимости от этапа строительства, однако, в целом, общий объем движения транспорта по местным дорогам увеличится в течение стадии строительства. Потенциальное воздействие шума будет максимальным при самом большом количестве рейсов в часы-пик и рейсов грузовиков большой грузоподъемности в общем.

Чтобы определить потенциальное воздействие шума, исходящего от транспортных средств на дороге в связи со строительством объекта, была произведена оценка уровней шума на различных расстояниях от дороги по почасовому движению транспорта. Максимальный уровень проходящего шума от грузовика с большой грузоподъемностью и работающего при 80 км/ч по оценкам составляет около 83 дБ(A), предполагая 8-часовой рабочий день. Оценка уровней шума на различных расстояниях и по почасовому движению транспорта приводится в **Таблице 7.2.**

Таблица 7.2 Уровни шума на разных расстояниях от грузовиков с большой грузоподъемностью

Почасовое	Уровень шумаLeq(1 -h) ^а на расстояниях дБ(A)					
движение	15м	75 м	150 м	300 м	750 м	1500 м
транспорта						
1	50.7	43.8	40.7	37.7	33.8	30.7
10	60.7	53.8	50.7	47.7	43.8	40.7
50	67.7	60.7	67.7	54.7	50.7	47.7
100	70.7	63.7	60.7	57.7	53.8	50.7

	Лист
OOC	93

Почасовое Уровень шумаLdn ^b на расстояниях дБ(A)						
движение	15м	75 м	150 м	300 м	750 м	1500 м
транспорта						
1	46.0	39.0	36.0	33.0	29.0	26.0
10	56.0	49.0	46.0	43.0	39.0	36.0
50	63.0	63.0	63.0	50.0	36.0	43.0
100	66.0	59.0	56.0	53.0	49.0	46.0

Leq(1-h)^а оценивался исходя из максимального эквивалентного уровня звукового давления проходящего шума, создаваемого грузовиком с большой грузоподъемностью, работающим при 80 км/ч, и транспортным потоком и регулировкой расстояния. (Leq - эквивалентный уровень звукового давления) Ldn^b оценивался, предполагая 8-часовую дневную смену. (Ldn - средний круглосуточный уровень звука).

Вклад в загрязнение окружающей среды в оцениваемом звуковом диапазоне оценивается как незначительный ввиду значительных расстояний от проектируемого объекта до жилой застройки.

Проведение дополнительных мероприятий по снижению шумового воздействия не требуется, так как влияние шумов на жилье от объектов проектируемой площадки ввиду значительной удаленности оценивается как незначительное.

7.2. Оценка вибрационного воздействия

Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником электромагнитных полей (ЭМП), излучаемых во внешнее пространство. Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, высоковольтные линии электропередач промышленной частоты, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы и т.п. Следует отметить техногенные источники электромагнитных и других физических полей специального назначения, применяемые в радиоэлектронном противодействии и размещаемые на стационарных и передвижных объектах на земле, воде, под водой, в воздухе.

Спектральная интенсивность некоторых техногенных источников ЭМП может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которым привык человек и другие живые организмы биосферы.

Электромагнитные излучения антропогенных источников («электромагнитное загрязнение») представляют большую сложность с точки зрения, как анализа, так и ограничения интенсивностей облучения. Это обусловлено следующими основными причинами:

- в большинстве случаев невозможно ограничение эмиссионного воздействия на ОС;
- невозможна замена данного фактора на другой, менее токсичный;
- невозможна «очистка» эфира от нежелательных излучений;
- неприемлем методический подход, состоящий в ограничении ЭМП до природного фона;
- вероятно долговременное воздействие ЭМП (круглосуточно и даже на протяжении ряда лет);
- возможно воздействие на большие контингенты людей, включая детей, стариков и больных;
- трудно статистически описать параметры излучений многих источников, распределенных в пространстве и имеющих различные режимы работы.

	Лист
OOC	94

ЭМП от отдельных источников могут быть классифицированы по нескольким признакам, наиболее общий из которых - частота ЭМП.

Электромагнитный фон в городских условиях имеет выраженный временной максимум от 10.00 до 22.00, причем в суточном распределении наибольший динамический диапазон изменения электромагнитного фона приходится на зимнее время, а наименьший - на лето. Для частотного распределения электромагнитного фона характерна многомодульность. Наиболее характерные полосы частот: 50...1000 Гц (до 20-й гармоники частоты 50 Гц) - энергоснабжение, 1...32 МГц - вещание коротковолновых станций, 66...960 МГц - телевизионное и радиовещание, радиотелефонные системы, радиорелейные линии связи.

В настоящее время отсутствуют нормативно-правовые акты в области нормирования уровней электромагнитных полей от технологического оборудования. Вследствие этого учет и контроль электромагнитного воздействия объекта на окружающую среду осуществляется путем анализа и сопоставления данных фондовых материалов и научных исследований в данной области.

Нормативный ПДУ напряженности электрического поля в жилых помещениях составляет 500 В/м. Кроме того, определены следующие ПДУ для электрических полей, излучаемых воздушными ЛЭП напряжением 300 кВ и выше:

- внутри жилых зданий 500 В/м;
- на территории зоны жилой застройки 1 кВ/м;
- в населенной местности вне зоны жилой застройки, а также на территориях огородов и садов 5 кВ/м;
- на участках пересечения высоковольтных линий с автомобильными дорогами категории 1 ...4 10 кВ/м;
 - в населенной местности 15 кВ/м;
- в труднодоступной местности и на участках, специально выгороженных для исключения доступа населения 20 кВ/м.

Способ защиты окружающей среды от воздействия ЭМП расстоянием и временем является основным, включающим в себя как технические, так и организационные мероприятия.

Используемая техника и оборудование на преиод строительства и эксплуатации не создает вредных электромагнитных или иных излучений, не являются источником каких-либо частотных колебаний и не выделяют вредных химических веществ и биологических отходов.

Нет шума вибраций и иных вредных физических воздействий от оборудования и аппаратуры, устанавливаемого на антенно-мачтовом сооружении.

7.3. Оценка возможного радиационного загрязнения района

Оценка радиационного воздействия осуществляется на основе изучения аспектов воздействия ионизирующих излучений (радиации) на компоненты окружающей среды.

Ионизирующее излучение - излучение, которое способно разрывать химические связи в молекулах живых организмов, вызывая тем самым биологически важные изменения. К ионизирующему излучению относятся: ультрафиолетовое излучение с высокой частотой, рентгеновское излучение, гамма-излучение.

Уровень радиационного воздействия от источников объекта определяется в мк3 в/ч с учетом воздействия в течение 24 часов.

Основополагающим критерием оценки воздействия ионизирующих излучений на окружающую среду является уровень воздействия на организм человека, как часть биосферы.

Так, устанавливаются следующие категории облучаемых лиц:

- -персонал (группы А и Б);
- -все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Для категорий облучаемых лиц устанавливаются три класса нормативов:

-основные пределы доз (ПД);

ООС 95		
OOC ₉₅		Лист
	OOC	95

- -допустимые уровни монофакторного воздействия, являющиеся производными от основных пределов доз;
- -контрольные уровни (дозы, уровни, активности, плотности потоков и др.).

С учетом специфики намечаемой деятельности при реализации проектных решений источники радиационного воздействия отсутствуют. Радиационный фон, присутствующий на рассматриваемой территории, является естественным, сложившимся для данного района местности. Согласно СП "Санитарноэпидемиологические требования к обеспечению радиационной безопасности" хозяйственная деятельность на данной территории по радиационному фактору не ограничивается. В связи с этим оценка воздействия потенциальных ионизирующих излучений не проводится. Нормирование допустимых радиационных воздействия и эмиссий радиоактивных веществ не выполняется ввиду отсутствия источников радиационного воздействия.

Таким образом, при реализации проектных решений воздействие по радиационному фактору оценивается как допустимое, так как при этом выполняются требования СП "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности" в части соблюдения принципов минимизации радиационного воздействия.

Таким образом, общее воздействие физических факторов на окружающую среду оценивается как допустимое (низкая значимость воздействия).

7.4. Мероприятия по снижению и защиты от шума

Процесс снижения шума включают в себя следующие мероприятия:

- звукопоглощение,
- звукоизоляция,
- глушение.

Машины и агрегаты, создающие шум при работе, должны эксплуатироваться таким образом, чтобы уровни звукового давления и уровни звука на постоянных рабочих местах в помещениях и на территории организации не превышали допустимых величин.

На период строительства объектов по проекту основные мероприятия по уменьшению уровней шума предусматривают:

- уменьшение шума в его источнике (замена шумных технологических процессов и механизмов бесшумными или менее шумными);
- систему сборки деталей агрегата, при которой сводятся к минимуму ошибки в сочленениях деталей (перекосы, неверные расстояния между центрами и т.п.);
- широкое применение смазки соударяющихся деталей вязкими жидкостями;
- оснащение агрегатов, создающих чрезмерный шум вследствие вихреобразования или выхлопа воздуха и газов (вентиляторы, воздуходувки, пневматические инструменты и машины, ДВС и т.п.) специальными глушителями;
- уменьшение шума на пути распространения (устройство звукоизолирующих ограждений, кожухов, экранов);
- применение для защиты органов слуха средств индивидуальной защиты от шума (беруши, наушники, шлемы, противошумные вкладыши, перекрывающих наружный слуховой проход; защитные каски с подшлемниками).

Борьбу с шумом проводят путем своевременного профилактического ремонта оборудования, подтягивания ослабевших соединений, своевременной смазки вращающихся частей.

	Лист
OOC	96

8. ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ

8.1. Состояние и условия землепользования, земельный баланс территории, намечаемой для размещения объекта и прилегающих хозяйств в соответствии с видом собственности

По общим биоклиматическим условиям формирования почвенного покрова, определяющим основное направление почвообразовательных процессов, Атырауская область приурочена к широтной пустынной зоне. В системе почвенно-географической зональности пустынная зона делится на две подзоны: бурых и серо-бурых пустынных почв. Почвенный покров Атырауской области отличается неоднородностью, связанной с различными условиями почвообразования. В этой связи в пределах характеризуемой территории можно выделить ряд крупных природных районов, существенно отличающихся по особенностям формирования и структуре почвенного покрова.

Почвенный покров супесчаных и песчаных увалисто-волнистых равнин, окаймляющих массивы грядово-бугристых закрепленных песков, представлен бурыми пустынными нормальными а также отчасти бурыми пустынными засоленными почвами, занимающими понижения рельефа. Широкое распространение имеют также солончаки соровые. Незначительное участие в структуре почвенного покрова занимают также бурые пустынные засоленные почвы. По наиболее глубоким депрессиям среди долин также встречаются солончаки обыкновенные, местами соровые. Характерной особенностью является преобладание в структуре почвенного покрова солонцов и солончаков, в том числе соровых, занимающих днища бессточных впадин. Формирование зональных автоморфных почв, среди которых абсолютно доминируют бурые пустынные солонцеватые почвы и солонцовые комплексы.

8.2. Характеристика современного состояния почвенного покрова

Геолого-литологический разрез проектируемой площадки строительства, изучен на глубину до 10 м и представлен отложениями дисперсных грунтов. В их составе выделяются суглинки, супеси. Результаты буровых и лабораторных работ, а также статистическая обработка полученных данных на исследуемой территории позволили выделить 4 инженерногеологических элементов (ИГЭ).

Ниже приводится детальная характеристика каждого ИГЭ.

Выделенные элементы охарактеризованы как:

ИГЭ-1 – Суглинок

ИГЭ-2 – Суглинок легкий песчанистый, текучий

ИГЭ-3- Супесь пластичная;

ИГЭ-4 – Супесь текучая

- ИГЭ 1 Суглинок коричневого и серо-коричневого цветов, от легкого тяжелого, преимущественно легкий, песчанистый, консистенция отложений твердого мягкопластичного, преимущественно тугопластичный, известковый, непросадочный, сильнонабухающий. Максимальная вскрытая мощность отложений 4,0 м в скважине ВН-1, в интервале с 2,2 до 6,2 м. Суглинок ИГЭ-1 залегает в разрезе участка первым слоем.
- **ИГЭ 2** Суглинок темно-коричневого и серого цветов, легкий песчанистый, текучий, непросадочный. Максимальная вскрытая мощность отложений 1,3 м в скважине ВН-5, в интервале с 2,4 до 3,7 м. Суглинок ИГЭ-2 часто чередуется различными слоями, преимущественно залегает вторым слоем.
- **ИГЭ 3** Супесь коричневого и светло-коричневого цветов, песчанистая, консистенция отложений от твердого до пластичного, преимущественно пластичная, слабопросадочная, ненабухающая. Максимальная вскрытая мощность отложений 1,3 м в скважине ВН-1, в интервале с 0,9 до 2,2 м. Супесь ИГЭ-3 залегает в разрезе участка слоя третьим и вторым слоями.

	Лист
OOC	97

ИГЭ 4 Супесь серого цвета, песчанистая, текучая. Максимальная вскрытая мощность отложений 1,0 м в скважине ВН-3, в интервале с 7,2 до 8,2 м. Супесь ИГЭ-4 залегает в разрезе участка слоя четвертым и пятым слоями.

8.3. Воздействие проектируемых работ на почвенный покров

Предполагаемое воздействие проектируемого объекта на почвенно-растительный покров будет сведено к следующему:

- деградация растительного покрова в результате проведения земельных работ;
- временное повышение уровня шума, искусственного освещения в результате работы специальной и автотранспортной техники;
- сокращение площади местообитания;
- незначительная гибель животных, ведущих подземный образ жизни (пресмыкающиеся и млекопитающие), в результате проведения земляных работ.

Также возможны непредвиденные воздействия в результате ненадлежащего обращения с отходами и ГСМ.

На основании анализа проектной документации, при соблюдении технологии выполнения предусмотренных мероприятий по защите и восстановлению почвенного покрова, можно сделать следующие выводы:

На период строительства проектируемых объектов возможное воздействие на почвенный покров оценивается в пространственном масштабе как локальное; во временном масштабе - как кратковременное и по интенсивности воздействия - как слабое.

8.4. Мероприятия по снижению негативного воздействия на почвеннорастительный покров

Реакция почв на антропогенные механические воздействия во многом определяется характером увлажнения. Чем влажнее почвенный профиль, тем на большую глубину будут распространяться нарушения. В этой связи степень деградации почвенного покрова существенно зависит от сезона проведения работ. Немаловажным также является проведение организационных мероприятий, направленных на упорядочение дорожной сети.

В процессе проведения работ по строительству объектов предусмотрен комплекс мероприятий, направленных на смягчение антропогенных воздействий:

- движение задействованного транспорта должно осуществляется только по имеющимся и отведенным дорогам;
- обустройство мест локального сбора и хранения отходов;
- сохранение растительности в местах, не занятых производственным оборудованием;
- четкое соблюдение границ рабочих участков;
- регулярное техническое обслуживание транспорта, строительной техники и производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;
- оптимизация продолжительности работы транспорта;
- введение ограничений по скорости движения транспорта;
- включение вопросов охраны окружающей среды в занятия по тренингу среди рабочих и руководящего звена.

9. ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ МИР

9.1. Современное состояние растительного покрова района

	Лист
OOC	98

Обследованная территория расположена на юго-востоке Прикаспийской впадины и согласно ботанико–географическому районированию относится к подзоне Северо-Туранских пустынь.

В растительном покрове преобладают полукустарничковые биоформы и представители ксерофитной и галафитной флорой.

Наиболее часто полынь формирует монодоминантные сообщества с незначительным участием итсигека, эбелека, эфемеров и эфемероидов (бурачок пустынный, дескурайния София, мортук восточный, ревень татарский).

С участием степных злаков (ковыля сарептского, пырея ломкого и пырея ветвистого) полынь встречается в западной части обследованной территории. В южной и восточной частях распространены галофитные варианты полыни с биюргуном и кейреуком.

В связи с различием видового состава выделены следующие ассоциации: белоземельнополынная, белоземельнополынно - итсигековая, белоземельно-полынно-тырсиковая, белоземельнополынно-злаковая, белоземельнополынно-еркековая, белоземельнополынно кейреуковая, белоземельнополынно-биюргуновая.

Довольно широко распространены на изучаемой территории биюргуновые сообщества, приуроченные к бурым засоленным почвам и солонцам бурым плоских и слабоволнистых участков равнины и денудационного уступа.

Встречаются биюргунники в основном в южной и северной частях участка. К плоскому рельефу равнины приурочены монодоминантные биюргуновые сообщества. На волнистых элементах рельефа биюргун произрастает совместно с полынью белоземельной, лебедой седой (кокпеком), мортуком, дескурайнией, мятликом, климакоптерой, гиргенсонией. Изредка встречается на биюргуновых пастбищах ежовник безлистный-итсигек.

В северно-западной части участка на слабоволнистой поверхности денудационного уступа получили широкое распространение еркековые сообщества. Почва под ними легкого механического состава (легкосуглинистые, супесчаные). Произрастая с тырсиком и полынью, еркек создает еркеково- тырсиковые и еркеко-белоземельнополынные пастбища, Кроме доминирующих растений, встречаются в небольшом обилии терескен роговидный, кохия простертая, мортук восточный, бурачок пустынный, мятлик пуговичный, дескурайния София.

Кокпековые сообщества распространены в юго-западной части участка. Встречаются по выровненным поверхностям делювиально-пролювиальной равнины на бурых солонцеватых, солончаковатых суглинистах почвах и солонцах бурых.

Кокпек формирует монодоминантные сообщества, а также с участием полыни белоземельной. В видовом составе преобладают полукустарники и полукустарнички (лебеда седая, ежовник солончаковый, ежовник безлистный, полынь белоземельная). Роль других растений невелика - это эфемеры и эфемероиды (бурачок пустынный, мятлик пуговичный, мортук восточный).

Тырсиковые сообщества встречаются небольшими участками в северо-западной части участка на слабоволнистой поверхности денудационного уступа, образуя комплексы с пустынной растительностью, размещаясь на зональных, бурых почвах..

В составе этих сообществ, преобладают травянистые ксерофитные многолетники. Ковыль сарептский образует сообщества с полынью бело-земельной и незначительным участием других растений: кохии простертой, мор тука восточного, бурачка пустынного, мятлика луковичного.

Однопестичнополынные сообщества на зональных почвах не играют большой роли в растительном покрове участка. Более широкое распространение они получили по ложбинам стока на лугово-бурых солончаковатых, тяжелосуглинистых и глинистых почвах. На лугах, кроме доминанта полыни однопестичной, из числа многолетников встречаются злаки - пырей ветвистый, ковыль сарептский, полукустарнички - кохия простертая, ежовник солончаковый, из травянистого многолетнего разнотравья - верблюжья колючка обыкновенная, солодка Коржинского, горчак ползучий, из эфемеров и эфемероидов - мортук восточный, мятлик луговичный. Полынь создает монодоминантные однопестичнополынные и однопестичнополынно-злаковые сообщества.

	Лист
000	99

Растительный покров обладает слабым восстановительным потенциалом, поскольку он легко раним, мало устойчив к антропогенным воздействиям, и легкий механический состав почв не способствует быстрому укоренению и закреплению проростков растений.

Полынь белоземельная характеризует для данной территории зональной тип растительности, а потому в промышленной зоне нефтепромысла, где она претерпевает сильное техногенное воздействие, нуждается в охране.

В целом, современное состояние растительного покрова ненарушенных земель на обследованной территории можно считать удовлетворительным.

9.2. Оценка воздействия намечаемой деятельности на растительный покров

Использование растительных ресурсов района при реализации проектных решений не предусматривается. Зона влияния намечаемой деятельности на растительность ограничивается участком проведения работ.

Изменения под влиянием антропогенной деятельности делятся по силе воздействия на катастрофические, очень сильные, умеренные и слабые. С учетом специфики намечаемой деятельности воздействие намечаемой деятельности на растительный мир оценивается как незначительное (Изменения в природной среде не превышают существующие пределы природной изменчивости). Изменения в растительном покрове района в зоне воздействия объекта при реализации проектных решений не прогнозируются.

Зона влияния планируемой деятельности на растительный мир ограничивается границами земельного отвода (прямое воздействие, включающее физическое уничтожение). Мониторинг растительного покрова в процессе осуществления намечаемой деятельности не предусматривается.

Оценка значимости воздействия намечаемой деятельности на растительность осуществляется на период строительства проектируемых объектов оценивается в пространственном масштабе как локальное; во временном масштабе - как кратковременное и по интенсивности воздействия - как слабое.

	Лист
OOC	100

10. ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЖИВОТНЫЙ МИР

10.1. Животный мир района проведения работ. Наличие редких, исчезающих и занесенных в Красную книгу видов животных.

Состояние животного мира обуславливается как природными, так и антропогенными факторами. Однако, если изменение условий среды обитания происходит под воздействием естественных процессов, изменения в экосистемах происходят эволюционным путем, то при доминирующем влиянии антропогенных факторов неблагоприятные изменения могут иметь скачкообразный характер, что в большинстве случаев ведет к разрушению сложившихся экосистем.

Степень воздействия на животный мир при осуществлении хозяйственной деятельности определяется сохранностью биологического разнообразия животного мира территории исследования. В связи с этим необходимо знать состояние животного мира на текущий момент. Для характеристики исходного состояния животного мира, видового разнообразия фауны, ареалов их распространения, путей миграции животных использованы материалы института зоологии НАН МОН РК, периодических изданий и результаты Фондовых материалов.

Интенсивное освоение богатейших месторождений нефти и газа на северо-восточном побережье Каспия требует комплексного решения вопросов, связанных с сохранением экологического равновесия в условиях возрастающего техногенного воздействия на экосистемы.

Северное побережье Каспийского моря, включая низовья р. Урал, по богатству и своеобразию животного мира не имеет аналогов в республике, поэтому этот регион имеет не только национальное, но и в значительной степени международное значение.

Северное побережье Каспия характеризуется относительно высоким видовым богатством фауны позвоночных животных. Здесь встречаются (постоянно и временно) 3 вида земноводных, 12 видов пресмыкающихся, около 260 видов птиц, 46 вида млекопитающих.

Район относительно богат эндимичными формами (более 60 видов и форм организмов не встречаются больше нигде в мире), но основной чертой фауны является ее комплексность. На восточном, северном и отчасти северо-западном побережье обитают виды Ирано-Туранского и Центрально-азиатского происхождения, генетически связанные с пустынными регионами Средней Азии и Казахстана. На западном побережье и отчасти на северном обитают мезофильные виды европейского происхождения и голарктические виды. Из млекопитающих к эндемикам относится единственный представитель ластоногих – каспийская нерпа.

К видам тесно, связанным с водными прибрежными и дельтовыми биотопами относятся 4 вида: болотная черепаха, каспийская черепаха, водяной уж и обыкновенный уж.

По встречаемости в наземных ценозах из пресмыкающихся наиболее многочисленными видами являются степная агама и разноцветная ящурка, на третьем месте по численности такырная круглоголовка, которая является широко распространенным видом с очаговым распространением, однако плотность их населения относительно невелика от 0,4 до 2 особей на км маршрута.. Выровненность рельефа и обедненный растительный покров усугубляет суровость климата, особенно во время зимовки в безснежные зимы. Помимо приведенных факторов, значительная часть северного побережья Каспия затапливается нагонными водами в связи с трансгрессией моря, что ведет к почти полной гибели ящериц.

Воздействие естественных отрицательных факторов, ограничивающих герпетофауну как в видовом, так и в количественном отношениях, усугубляется антропогенным воздействием.

Млекопитающих насчитывается 46 видов, из которых 4 относятся к категории многочисленных - лисица, степной хорь, сайга и хомячек Эверсманна, 23 вида обычных и 2 вида редких и исчезающих, занесенных в Красную книгу Республики Казахстан - *пегий путорак и перевязка*.

000	
ρος Γ	Лист
OOC	101

В зоогеографическом отношении степных млекопитающих в этом регионе немного, встречается степной хорь и степная пеструшка. Основу фауны составляют пустынные виды, которых здесь насчитывается не менее 27, в том числе 11 видов широко распространенных. Плотность населения млекопитающих в районе исследования относительно невелика, в основном из-за природных условий.

Среди млекопитающих, обитающих на северном побережье Каспия, преобладают ксерофильные виды, предпочитающие степные, полупустынные и пустынные биотопы. Многочисленными (фоновыми) видами являются представители отрядов грызунов, зайцеобразных и ряд мезофильных и ксерофильных видов хищных. Наиболее характерны: зайц-толай, тушканчики, песчанки, из хищных - волк и корсак, из копытных - сайгак.

Кабан распространен по всему северному побережью в местах, где есть заросли тростника, камыша и рогоза. В зимний период часть зверей откочевывает из прибрежной зоны в пески.

Орнитофауна рассматриваемого региона представлена типичными представителями птиц пустынных ландшафтов и птиц водно-болотных угодий, качественный и количественный состав которых значительно богаче и интереснее.

На побережье северной части Каспийского моря (включая наземных видов птиц) в настоящее время встречаются более 260 видов птиц, из них гнездится 110 видов, зимует 76 видов и пролетных 92 вида. Всего на Северном Каспии в различные сезоны регистрировалось от 120 до 260 видов птиц, относящихся к 18 отрядам.

Для наземной орнитофауны района наиболее характерными гнездящимися птицами являются серый и малый жаворонки, рогатый жаворонок, степной жаворонок, авдотка, азиатский зуек, серый сорокопут и степной орел (малочисленный). Редко встречаются чернобрюхий рябок (краснокнижный), орлан-долгохвост (краснокнижный, находящийся под угрозой исчезновения), желчная овсянка, пустынная каменка, обыкновенный козодой. В оврагах и пустынных балках гнездится курганник. В населенных пунктах отмечается гнездование домового и полевого воробьев, деревенской и городской ласточек, удода, скворца, белой трясогузки, а в развалинах и могилах - домового сыча, степной пустельги и розового скворца. На столбах высоковольтных линий электропередач устраивают свои гнезда степной орел, курганник и обыкновенная пустельга. Экстремальные условия, дефицит водных источников, высокая засоленность соровых участков и малая доля древесно-кустарниковой растительности обуславливают бедность видового состава птиц и низкую плотность их гнездования.

Карта животного мира представлена на рис. 10.1.

	Лист
OOC	102

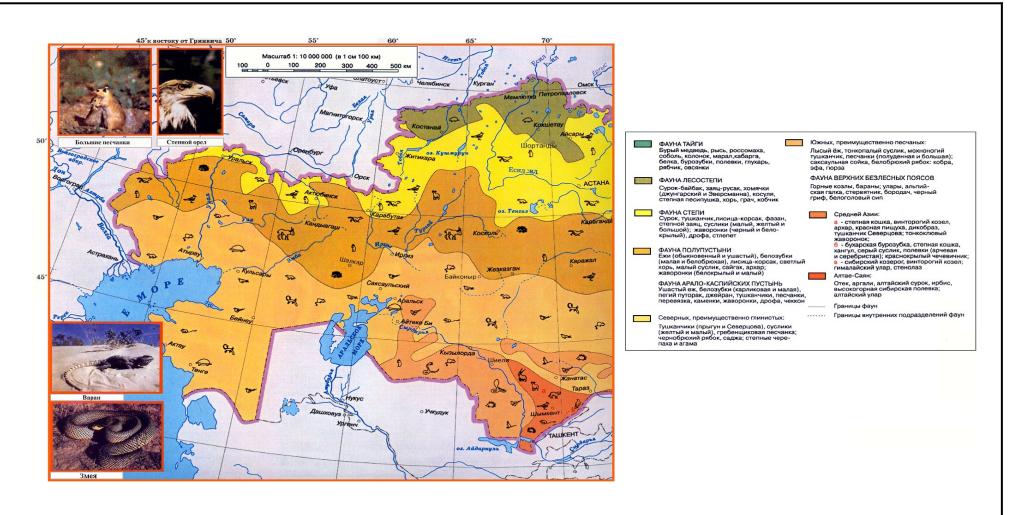


Рис. 10.1 Обзорная карта животного мира

10.2. Характеристика воздействия объекта на видовой состав, численность фауны

Известно, что почти все виды животных уязвимы с точки зрения воздействия на них антропогенных (техногенных) факторов. Особенно сильное влияние техногенных факторы оказывают на земноводных и пресмыкающихся. Большинство представителей этой группы животных привязаны к местам своего обитания и в экстремальных ситуациях не способны избежать отрицательных внешних воздействий путем миграции на дальние расстояния.

В период размножения при техногенном воздействии могут ухудшаться условия существования для ряда видов птиц. В этом случае негативное воздействие будет иметь фактор беспокойства, вызванный производственным шумом, в результате которого птицы могут бросать свои гнезда. В меньшей степени шумовой фон отражается на мелких млекопитающих. Дежурное ночное освещение участка привлекать животных, ведущих ночной образ жизни (ежи, совы, насекомые и др.), что повышает риск их гибели.

Осуществление проектных работ окажет определенное воздействие на животный мир. Данное воздействие можно рассматривать, как механического воздействия. Причинами механического воздействия на животный мир или беспокойства представителям фауны становится движение транспорта.

В целом влияние на животный мир в процессе проведения проектных работ, можно оценить, как локальное, кратковременное и незначительное.

10.3. Мероприятия по предотвращению негативных воздействий на биоразнообразие, численность фауны.

Для минимизации воздействия проектируемых работ на животный мир потребуется выполнение ряда природоохранных мероприятий:

- ✓ разработка оптимальных маршрутов движения автотранспорта;
- ✓ ограничение скорости движения автотранспорта и снижение интенсивности движения в ночное время;
- ✓ недопущение организации свалок на участке проведения работ.

11.ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЛАНДШАФТЫ И МЕРЫ ПО ПРЕДОТВРАЩЕНИЮ, МИНИМИЗАЦИИ, СМЯГЧЕНИЮ НЕГАТИВНЫХ ВОЗДЕЙСТВИЙ, ВОССТАНОВЛЕНИЮ ЛАНДШАФТОВ В СЛУЧАЯХ ИХ НАРУШЕНИЯ

Воздействие на ландшафты в виду кратковременных строительных работ не предполагается.

12.ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕДУ

12.1. Современные социально-экономические условия жизни местного населения

Уровень жизни

Среднедушевые номинальные денежные доходы населения по оценке в III квартале 2022 года составили 211 564 тенге, что на 5,5% ниже, чем в III квартале 2021 года. Реальные денежные доходы за указанный период уменьшились на 11,8%.

Рынок труда и оплата труда

Численность лиц, зарегистрированных в органах занятости в качестве безработных, на конец февраля 2022 года составила 14 392 человек или 4,4% к рабочей силе.

	Лист
OOC	104

Среднемесячная номинальная заработная плата, начисленная работникам в январе-декабре 2022 года, составила 367 588 тенге. По сравнению с январем-декабрем 2021 года, увеличилась на 9,9%. Индекс реальной заработной платы составил 102,9%.

Цены

Индекс потребительских цен в феврале 2022 года, по сравнению с декабрем 2021 года, составил 101,3%. Цены увеличились на продовольственные товары на 2,2%, платные услуги - на 0,7%, непродовольственные товары - на 0,5%. Цены предприятий-производителей на промышленную продукцию в феврале 2022 года, по сравнению с декабрем 2021 года, повысились на 19,4%.

Национальная экономика

Объем валового регионального продукта (ВРП) за январь-сентябрь 2021 года составил в текущих ценах 5 150,1 млрд. тенге. В структуре ВРП доля производства товаров составила 56,8%, услуг — 36,4%. Объем инвестиций в основной капитал в январе-феврале 2022 года составил 349,8 млрд. тенге, что на 51,2% меньше, чем в январе-феврале 2021 года.

Торговля

По отрасли «Торговля (оптовая и розничная торговля; ремонт автомобилей и мотоциклов)» индекс физического объема в январе-феврале 2022 года составил 93,5%.

Объем розничной торговли за январь-февраль 2022 года составил 49 058,2 млн. тенге или на 2,2% меньше уровня соответствующего периода 2021 года (в сопоставимых ценах).

Объем оптовой торговли за январь-февраль 2022 года составил 449 536,2 млн. тенге или на 6,3% меньше уровня соответствующего периода 2021 года (в сопоставимых ценах).

Реальный сектор экономики

Объем промышленного производства в январе-феврале 2022 года составил 1 122 264,2 млн. тенге в действующих ценах, что на 16,9% ниже, чем в январе-феврале 2021 года. В горнодобывающей промышленности и разработке карьеров производство уменьшилось на 16,8%, в обрабатывающей промышленности - на 20,3%. В водоснабжении; сборе, обработке и удалении отходов, деятельности по ликвидации загрязнений производство увеличилось на 10%, в снабжении электроэнергией, газом, паром, горячей водой и кондиционированием воздуха - на 3,5%.

Объем валового выпуска продукции (услуг) сельского, лесного и рыбного хозяйства в январефеврале 2022 года составил 7 472 млн. тенге, что меньше на 4,9%, чем в январефеврале 2021 года.

Индекс физического объема в отрасли «Транспорт» в январе-феврале 2022 года составил 108,1%.

Объем грузооборота в январе-феврале 2022 г. составил 7 191,2 млн. тонн/км (с учетом оценки объема грузооборота индивидуальных предпринимателей, занимающихся коммерческими перевозками) и уменьшился на 0,5%, по сравнению с соответствующим периодом 2021 г. Объем пассажирооборота составил 240,4 млн. пассажир/км и увеличился на 2,4%.

Количество зарегистрированных юридических лиц по состоянию на 1 марта 2022 года составило 13 467 единиц. За этот же период количество действующих юридических лиц составило 9 846 единиц.

Финансовая система

Финансовый результат предприятий и организаций за III квартал 2022 года сложился в виде дохода на сумму 324,3 млрд. тенге, что на 63,9% ниже уровня аналогичного периода 2021 года. Уровень рентабельности составил 23,8%. Доля убыточных предприятий среди общего числа отчитавшихся составила 36,7%.

ATPress.kz

	Лист
OOC	105

12.2. Оценка влияния реализации проекта на социально-экономическую ситуацию в регионе

В настоящем разделе дается описание основных воздействий на социально - экономическую среду при строительстве объектов. Население, инфраструктура и местная сфера услуг здесь будут задействованы как в строительных операциях, так и на вспомогательных и обслуживающих работах.

Источниками разной значимости положительных воздействий для экономики и социальной сферы будет являться привлечение местного населения к работам по основным и вспомогательным видам деятельности, связанным с проектом.

13.ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА ПРИ АВАРИЙНЫХ СИТУАЦИЯХ

13.1. Ценность природных комплексов

Экологическая опасность – состояние, характеризующееся наличием или вероятностью разрушения, изменения состояния окружающей среды под влиянием антропогенных и природных воздействий, в том числе обусловленных бедствиями и катастрофами, включая стихийные и в связи с этим угрожающее жизненно важным интересам личности общества.

Основными причинами возникновения аварийных ситуаций при проведении строительномонтажных работ могут быть технические ошибки рабочего персонала, нарушение противопожарных правил и правил техники безопасности, повреждение систем энергоснабжения, водоснабжения и водоотведения.

Основными мерами предупреждения аварий является строгое выполнение технологической и производственной дисциплины, выполнение проектных решений и оперативный контроль.

Анализ мер по предупреждению и ликвидации аварий позволяет говорить о том, что при их реализации вероятность возникновения аварий сведена к минимуму.

Безопасность в период проведения строительно-монтажных работ предусматривает:

- ✓ нахождение на рабочем месте в специальной одежде и использование средств индивидуальной защиты;
- ✓ периодическое проведение инструктажей и занятий по технике безопасности, постоянное напоминание всему рабочему персоналу о необходимости соблюдения правил безопасности;
- ✓ своевременное устранение утечек топлива.

13.2. Вероятность аварийных ситуаций

Природные факторы воздействия.

Под *природными* факторами понимается разрушительное явление, вызванное геофизическими причинами, которые не контролируются человеком. Иными словами, при возникновении чрезвычайной природной ситуации возникает опасность саморазрушения окружающей среды.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами.

К природным факторам относятся:

- > землетрясения;
- ураганные ветры;
- > повышенные атмосферные осадки;
- наводки и наводнения.

	Лист
OOC	106

<u>Сейсмическая активность.</u> Согласно данным сейсмического микрорайонирования территория не входит в зону риска по сейсмоактивности.

Характер воздействия: одномоментный. Вероятность возникновения землетрясения с силой 7-9 баллов, которое может привести к значительным разрушениям, пренебрежимо мала.

<u>Неблагоприятные метеоусловия.</u> В результате неблагоприятных метеоусловий, таких как сильные ураганные ветры, повышенные атмосферные осадки, могут произойти частичные повреждения оборудования, кабельных линий силовых приводов на промплощадке.

Анализ выше представленных природно-климатических данных показал, что для этого периода работ характерна вероятность возникновения пожароопасных ситуаций. возникновении пожароопасной ситуации при преобладании восточного распространения огненного облака будет максимально распространяться на западное направление. Количество ситуаций, вызванных сильными ветрами, будет увеличиваться за счет проявления плохо прогнозируемых локальных метеопроцессов.

Как показывает анализ подобных ситуаций, причиной возникновения пожаров является не только природные факторы, но и неосторожное обращение персонала с огнем и нарушение правил техники безопасности.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Антропогенные факторы.

Под *антропогенными* факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

Возможные техногенные аварии при стриотельных работах можно разделить на следующие категории:

- аварийные ситуации с автотранспортной техникой;
- **>** аварии и пожары на временных хранилищах горюче-смазочных материалов (ГСМ);
- аварийные ситуации при проведении работ.

<u>Аварийные ситуации с автотранспортной техникой.</u> При проведении работ будет использоваться автотранспорт. Выезд транспорта в неисправном виде, или опрокидывание транспорта может привести к возникновению аварий и как следствие к утечке топлива. Утечка топлива может привести к загрязнению почвенно-растительного покрова, поверхностных и подземных вод горюче смазочными материалами.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций низкая.

13.3. Рекомендации по предупреждению аварийных ситуаций и ликвидации их последствий

Важнейшую роль в обеспечении безопасности рабочего персонала и местного населения и охраны окружающей природной среды при проведении работ играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всем персоналом. При проведении работ необходимо уделять первоочередное внимание монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда, обучению персонала и проведению практических занятий.

Мероприятия по устранению несчастных случаев на производстве. Для обеспечения безопасных условий труда рабочие должны знать назначение установленной арматуры, приборов, инструкций по эксплуатации и выполнять все требования инструкций.

На ликвидацию аварий затрачивается много времени и средств, поэтому при производстве планируемых работ необходимо уделять первоочередное внимание предупреждению аварий.

В целом, для предотвращения или предупреждения аварийных ситуаций при производстве планируемых работ рекомендуется следующий перечень мероприятий:

• обязательное соблюдение всех нормативных правил при строительстве;

ООС Лист 107		
OOC 107		Лист
	OOC	107

- периодическое проведение инструктажей и занятий по технике безопасности, постоянное напоминание всему рабочему персоналу о необходимости соблюдения правил безопасности;
- все операции по заправке, хранению, транспортировке ГСМ должны проходить под контролем ответственных лиц и строго придерживаться правил техники безопасности;
- размещение резервного склада с топливом на отдаленном расстоянии от жилых вагончиков;
- своевременное устранение утечек топлива.

14.ПЕРЕЧЕНЬ НОРМ И СТАНДАРТОВ

- 1. Кодекс Республики Казахстан от 02.01.2021 года N 400-VI и
- 2. Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки».
- 3. Сборник сметных норм и расценок на эксплуатацию строительных машин. Астана, 2003 г.
- 4. РНД 211.2.02.04-2004. Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. Астана, 2005 г.
- 5. Методика расчета нормативов выбросов от неорганизованных источников (Приложение №8 к приказу МОСиВР РК от 12.06.2014 г. №221-ө).
- 6. РНД 211.2.02.05-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). Астана, 2004 г.
- 7. РНД 211.2.02.03-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)». Астана, 2004 г.
- 8. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 9. "Временное методическое пособие по расчету выбросов от неорганизованных источников строительных материалов". Новороссийск, 1989.
- 10. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение № 3 к приказу Министра ООС РК от 18 апреля 2008 г. № 100-п.

	Лист
OOC	108

Приложение 1.

Расчет выбросов загрязняющих веществ

Расчеты валовых выбросов при строительно-монтажных работах (СМР)

Характеристика источников выбросов загрязняющих веществ в атмосферу индивидуального технического проекта на бурение наклонно-направленной эксплуатационной скважины БОР-5 проектной глубиной 1650 метров на месторождении Боркылдакты

Источник загрязнения N 0001. Выхлопная труба Источник выделения N 001 01. Дизель-генератор буровой установки TAD 1641GE Volvo

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 21.6142

Эксплуатационная мощность стационарной дизельной установки Р_э. кВт. 470

Удельный расход топлива на экспл./номин. режиме работы двигателя **b**₃. г/кВт*ч. 73.2

Температура отработавших газов T_{oz} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oc} . кг/с:

 $G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 73.2 * 470 = 0.30000288$ (A.3)

Удельный вес отработавших газов γ_{oc} кг/м³:

 $\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} . м³/с:

 $Q_{oz} = G_{oz} / \gamma_{oz} = 0.30000288 / 0.359066265 = 0.835508398$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{vi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капи ${
m Ta}$ Льного ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_{i} . г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{ii} * B_{ioo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы:

MIIIOCO	выоросы:					
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.002666667	0.6916544	0	1.002666667	0.6916544
0304	Азот (II) оксид (Азота оксид) (6)	0.162933333	0.11239384	0	0.162933333	0.11239384
0328	Углерод (Сажа. Углерод черный) (583)	0.065277778	0.0432284	0	0.065277778	0.0432284
0330	Сера диоксид (Ангидрид сернистый.	0.156666667	0.108071	0	0.156666667	0.108071

	ЛИСТ
OOC	109

	газ. Сера (IV) оксид) (516)					
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.809444444	0.5619692	0	0.809444444	0.5619692
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000001567	0.000001189	0	0.000001567	0.000001189
1325	Формальдегид (Метаналь) (609)	0.015666667	0.0108071	0	0.015666667	0.0108071
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.378611111	0.2593704	0	0.378611111	0.2593704

Источник загрязнения N 0002. Выхлопная труба Источник выделения N 001 01. Дизель-генератор буровой установки TAD 1641GE Volvo (резерв)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 21.6142

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 470

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 . г/кBт*ч. 73.2

Температура отработавших газов T_{oz} . K. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

 $G_{0z} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 73.2 * 470 = 0.30000288$ (A.3)

Удельный вес отработавших газов γ ₀₂. кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С. кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} . м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.30000288 / 0.359066265 = 0.835508398$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{ni} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов a_i г/кг.топл. стационарной дизельной установки ДО Капитального ремонта

T domina Sina icinini i	Diopocob q ₃₁ i	/ III . I O I I I C I U	HITOTIA PITOTI A	qriscondition y c	типовин до	itaiiii ayibii	or o pemonia
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_{i} . г/с:

 $M_i = e_{Mi} * P_{\circ} / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{ii} * B_{cod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Umaza az ignaci i

MIIIOCO C	зыоросы:					
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	С
		очистки	очистки		очисткой	очисткой
	Азота (IV) диоксид (Азота диоксид) (4)	1.002666667	0.6916544	0	1.002666667	0.6916544
0304	Азот (II) оксид (Азота	0.162933333	0.11239384	0	0.162933333	0.11239384

	ЛИСТ
OOC	110

1	оксид) (6)	·				
0328	Углерод (Сажа. Углерод черный) (583)	0.065277778	0.0432284	0	0.065277778	0.0432284
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.156666667	0.108071	0	0.156666667	0.108071
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.809444444	0.5619692	0	0.809444444	0.5619692
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000001567	0.000001189	0	0.00001567	0.000001189
1325	Формальдегид (Метаналь) (609)	0.015666667	0.0108071	0	0.015666667	0.0108071
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.378611111	0.2593704	0	0.378611111	0.2593704

Источник загрязнения N 0003. Выхлопная труба Источник выделения N 001 01. Буровая установка ZJ-30 (или аналог)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it zod}$. т. 27.02

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 400

Удельный расход топлива на экспл./номин. режиме работы двигателя b₃. г/кBт*ч. 107.5

Температура отработавших газов T_{oz} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 107.5 * 400 = 0.37496$$
 (A.3)

Удельный вес отработавших газов y_{02} . кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} . м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.37496 / 0.359066265 = 1.044264072$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов $e_{\scriptscriptstyle Mi}$ г/кBт*ч стационарной дизельной установки до капитального ремоHТа

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов $m{q}_{\scriptscriptstyle 3i}$ г/кг.топл. стационарной дизельной установки до капитального ремонта

			<u>' </u>	·			
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_{i} . г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{3i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы:

	Лист
OOC	111

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.853333333	0.86464	0	0.853333333	0.86464
0304	Азот (II) оксид (Азота оксид) (6)	0.138666667	0.140504	0	0.138666667	0.140504
0328	Углерод (Сажа. Углерод черный) (583)	0.05555556	0.05404	0	0.055555556	0.05404
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.133333333	0.1351	0	0.1333333333	0.1351
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.688888889	0.70252	0	0.688888889	0.70252
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000001333	0.000001486	0	0.000001333	0.000001486
1325	Формальдегид (Метаналь) (609)	0.013333333	0.01351	0	0.013333333	0.01351
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.322222222	0.32424	0	0.322222222	0.32424

Источник загрязнения N 0004. Выхлопная труба Источник выделения N 001 01. Цементировочный агрегат ЦА-320

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 27.02

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 400

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 . г/кBт*ч. 107.5

Температура отработавших газов T_{oc} . K. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 107.5 * 400 = 0.37496$$
 (A.3)

Удельный вес отработавших газов y_{oz} . кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м³;

Объемный расход отработавших газов Q_{oz} . м³/с:

$$Q_{0z} = G_{0z} / \gamma_{0z} = 0.37496 / 0.359066265 = 1.044264072$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до Капитального ремонта

1			1 11				
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

l ——— '	. 1		<u> </u>	·			
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i . г/с:

$$M_i = e_{\scriptscriptstyle Mi} * P_{\scriptscriptstyle 9} / 3600 \quad (1)$$

Расчет валового выброса W_i . т/год:

	Лист
OOC	112

 $W_i = q_{ii} * B_{iod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	с	С
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.853333333	0.86464	0	0.853333333	0.86464
0304	Азот (II) оксид (Азота оксид) (6)	0.138666667	0.140504	0	0.138666667	0.140504
0328	Углерод (Сажа. Углерод черный) (583)	0.05555556	0.05404	0	0.05555556	0.05404
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.133333333	0.1351	0	0.133333333	0.1351
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.688888889	0.70252	0	0.688888889	0.70252
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000001333	0.000001486	0	0.000001333	0.000001486
1325	Формальдегид (Метаналь) (609)	0.013333333	0.01351	0	0.013333333	0.01351
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.322222222	0.32424	0	0.322222222	0.32424

Источник загрязнения N 0005. Выхлопная труба Источник выделения N 001 01. Цементно-смесительная машина СМН-20

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 31.341

Эксплуатационная мощность стационарной дизельной установки $P_{\mathfrak{p}}$. кВт. 764

Удельный расход топлива на экспл./номин. режиме работы двигателя b₃. г/кBт*ч. 65.3

Температура отработавших газов T_{ω} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 65.3 * 764 = 0.435033824$$
 (A.3)

Удельный вес отработавших газов y_{02} . кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{oz} . м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.435033824 / 0.359066265 = 1.211569747$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до Капитального ремонта

	Pmi	-,			До		o positional
Группа	CO	NOx	CH	С	SO2	CH2O	БП
В	5.3	8.4	2.4		1.4	0.1	1.1E-5

		Лист
(OOC	113

 Таблица значений выбросов q₃i г/кг.топл. стационарной дизельной установки до капитального ремонта

 Группа
 CO
 NOx
 CH
 C
 SO2
 CH2O
 БП

 B
 22
 35
 10
 1.5
 6
 0.4
 4.5E-5

Расчет максимального из разовых выброса M_i . г/с:

 $M_i = e_{Mi} * P_3 / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{ii} * B_{cod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	C
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.426133333	0.877548	0	1.426133333	0.877548
0304	Азот (II) оксид (Азота оксид) (6)	0.231746667	0.14260155	0	0.231746667	0.14260155
0328	Углерод (Сажа. Углерод черный) (583)	0.074277778	0.0470115	0	0.074277778	0.0470115
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.297111111	0.188046	0	0.297111111	0.188046
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	1.124777778	0.689502	0	1.124777778	0.689502
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000002334	0.00000141	0	0.000002334	0.00000141
1325	Формальдегид (Метаналь) (609)	0.021222222	0.0125364	0	0.021222222	0.0125364
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.509333333	0.31341	0	0.5093333333	0.31341

Источник загрязнения: 0006 - 0007, Выхлопная труба Источник выделения: 0006 01, Насос буровой F-1000 - 2шт.

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и

средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала Удельный выброс, кг/час (Прил.62), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., N1 = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт.. NN1=2

Время работы одной единицы оборудования, час/год, $_{T}$ = 792

Максимальный из разовых выброс, г/с (6.2), $G = Q \cdot NN1 / 3.6 = 0.13 \cdot 2 / 3.6 = 0.0722$

	Лист
OOC	114

Валовый выброс, т/год (6.3), $M = (Q \cdot N1 \cdot T_1) / 1000 = (0.13 \cdot 2 \cdot 792) / 1000 = 0.206$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Концентрация 3B в парах, % масс (Прил.14[3]), *CI* = **99.72**

Валовый выброс, т/год (5.2.5 [3]), $_M_ = CI \cdot M / 100 = 99.72 \cdot 0.206 / 100 = 0.2054232$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.0722 / 100 = 0.07199784$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3B в парах, % масс (Прил.14[3]), *CI* = **0.28**

Валовый выброс, т/год (5.2.5 [3]), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.206 / 100 = 0.0005768$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_{\mathbf{G}} = \mathbf{CI} \cdot \mathbf{G} / 100 = \mathbf{0.28} \cdot \mathbf{0.0722} / 100 = \mathbf{0.00020216}$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00020216	0.0005768
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.07199784	0.2054232
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения: 0008 - 0009, Выхлопная труба Источник выделения: 0006 01, Буровой насос - 2шт.

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и

средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала Удельный выброс, кг/час (Прил.Б2), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., N1 = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт., NN1 = 2

Время работы одной единицы оборудования, час/год, $_{T}$ = 792

Максимальный из разовых выброс, г/с (6.2), $G = Q \cdot NN1 / 3.6 = 0.13 \cdot 2 / 3.6 = 0.0722$

Валовый выброс, т/год (6.3), $M = (Q \cdot N1 \cdot T_) / 1000 = (0.13 \cdot 2 \cdot 792) / 1000 = 0.206$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Концентрация 3B в парах, % масс (Прил.14[3]), *CI* = **99.72**

Валовый выброс, т/год (5.2.5 [3]), $_M_$ = $CI \cdot M / 100 = 99.72 \cdot 0.206 / 100 = 0.2054232$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.0722 / 100 = 0.07199784$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил.14[3]), CI = 0.28

Валовый выброс, т/год (5.2.5 [3]), $_M_$ = $CI \cdot M / 100 = 0.28 \cdot 0.206 / 100 = 0.0005768$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_{G}$ = $CI \cdot G / 100 = 0.28 \cdot 0.0722 / 100 = 0.00020216$

Итоговая таблица:

rii Oi Oba	я таолица.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00020216	0.0005768
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.07199784	0.2054232
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

	Пиот
	Лист
OOC	115

Источник загрязнения N 0010. Выхлопная труба Источник выделения N 001 01. Дизельные двигатели насоса Chidong G12V190PZL1

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 1.351

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 9

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 . г/кВт*ч. 238.91

Температура отработавших газов T_{oz} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 238.91 * 9 = 0.018749657$$
 (A.3)

Удельный вес отработавших газов y_{02} . кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{oc} . м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.018749657 / 0.359066265 = 0.052217818$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{ni} г/кВт*ч стационарной дизельной установки до Капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

	1 1		<u>' </u>	1			
Группа	CO	NOx	CH	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_{i} . г/с:

 $M_i = e_{Mi} * P_{\circ} / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{ii} * B_{iod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы:

Код	Примесь	г/сек без	т/год без	% очистки	г/сек С	т/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0206	0.0464744	0	0.0206	0.0464744
0304	Азот (II) оксид (Азота оксид) (6)	0.0033475	0.00755209	0	0.0033475	0.00755209
0328	Углерод (Сажа. Углерод черный) (583)	0.00175	0.004053	0	0.00175	0.004053
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.00275	0.0060795	0	0.00275	0.0060795
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.018	0.04053	0	0.018	0.04053
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000000033	0.000000074	0	0.000000033	0.000000074
1325	Формальдегид (Метаналь) (609)	0.000375	0.0008106	0	0.000375	0.0008106
2754	Алканы С12-19 /в пересчете на С/	0.009	0.020265	0	0.009	0.020265

	Лист
OOC	116

(Углеводороды предельные С12-С19 (в пересчете на С);			
Растворитель РПК-265П) (10)			

Источник загрязнения N 0011. Выхлопная труба Источник выделения N 001 01. Дизельные двигатели насоса Chidong G12V190PZL1

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 1.351

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 9

Удельный расход топлива на экспл./номин. режиме работы двигателя *b*₃. г/кВт*ч. 238.91

Температура отработавших газов T_{or} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

 $G_{0z} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 238.91 * 9 = 0.018749657$ (A.3)

Удельный вес отработавших газов γ_{02} . кг/м³:

 $\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м³;

Объемный расход отработавших газов Q_{oz} . м³/с:

 $Q_{0z} = G_{0z} / \gamma_{0z} = 0.018749657 / 0.359066265 = 0.052217818$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

I 							
Группа	CO	NOx	CH	C	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитальногО ремонта

I	1 1		1 1	1			
Группа	CO	NOx	CH	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i . г/с:

 $M_i = e_{Mi} * P_3 / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{2i} * B_{200} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO_2

Итого выбросы:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0206	0.0464744	0	0.0206	0.0464744
0304	Азот (II) оксид (Азота оксид) (6)	0.0033475	0.00755209	0	0.0033475	0.00755209
0328	Углерод (Сажа. Углерод черный) (583)	0.00175	0.004053	0	0.00175	0.004053
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.00275	0.0060795	0	0.00275	0.0060795
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.018	0.04053	0	0.018	0.04053

ООС Лист 117

0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000000033	0.000000074	0	0.000000033	0.000000074
1325	Формальдегид (Метаналь) (609)	0.000375	0.0008106	0	0.000375	0.0008106
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.009	0.020265	0	0.009	0.020265

Источник загрязнения N 0012. Резервуар для дизельного топлива Источник выделения N 001 01. Резервуар для дизельного топлива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), *CMAX* = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, **QOZ** = **111426.5**

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3 (Прил. 15), **COZ = 1.19**

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 111426.5

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3 (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 10.4

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 10.4) / 3600 = 0.0065$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 111426.5 + 1.6 \cdot 11142$

 $111426.5) \cdot 10^{-6} = 0.311$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (111426.5 + 11426.5)$

111426.5) · $10^{-6} = 5.57$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.311 + 5.57 = 5.88

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $_{\mathbf{M}} = CI \cdot M / 100 = 99.72 \cdot 5.88 / 100 = 5.863536$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G / 100 = 99.72 \cdot 0.0065 / 100 = 0.0064818$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 5.88 / 100 = 0.016464$

Максимальный из разовых выброс, г/с (5.2.4), $_G_$ = $CI \cdot G / 100 = 0.28 \cdot 0.0065 / 100 = 0.0000182$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000182	0.016464
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.0064818	5.863536

OOC 118		Лист
	OOC	118

Источник загрязнения N 0013. Выхлопная труба Источник выделения N 001 01. ППУ

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} . т. 1.351

Эксплуатационная мощность стационарной дизельной установки P_3 . кВт. 9

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 . г/кBт*ч. 1563.7

Температура отработавших газов T_{oc} . К. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} . кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 1563.7 * 9 = 0.122719176$$
 (A.3)

Удельный вес отработавших газов y_{ox} . кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{oc} . м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.122719176 / 0.359066265 = 0.34177306$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{ni} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{si} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i . г/с:

 $M_i = e_{Mi} * P_{\circ} / 3600$ (1)

Расчет валового выброса W_i . т/год:

 $W_i = q_{ii} * B_{iod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. 0.8 - для NO_2 и 0.13 - для NO_2

Итого выбросы:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0206	0.0464744	0	0.0206	0.0464744
0304	Азот (II) оксид (Азота оксид) (6)	0.0033475	0.00755209	0	0.0033475	0.00755209
0328	Углерод (Сажа. Углерод черный) (583)	0.00175	0.004053	0	0.00175	0.004053
0330	Сера диоксид (Ангидрид сернистый. Сернистый газ. Сера (IV) оксид) (516)	0.00275	0.0060795	0	0.00275	0.0060795
0337	Углерод оксид (Окись углерода. Угарный газ) (584)	0.018	0.04053	0	0.018	0.04053
0703	Бенз/а/пирен (3.4- Бензпирен) (54)	0.000000033	0.000000074	0	0.000000033	0.000000074
1325	Формальдегид (Метаналь) (609)	0.000375	0.0008106	0	0.000375	0.0008106
2754	Алканы С12-19 /в	0.009	0.020265	0	0.009	0.020265

	Лист
OOC	119

пересчете на С/			
(Углеводороды			
предельные С12-С19 (в			
пересчете на С);			
Растворитель РПК-265П)			
(10)			

Источник загрязнения N 0014, Выхлопная труба Источник выделения N 001, Дизельные двигатели САТ 3408В

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 31.341

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 764

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{2} , г/кBт * ч, 65.3

Температура отработавших газов T_{ee} , K. 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 65.3 * 764 = 0.435033824$$
 (A.3)

Удельный вес отработавших газов \mathbf{y}_{oz} , кг/м³:

 $\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.435033824 / 0.359066265 = 1.211569747$$
 (A.4)

2.Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
В	5.3	8.4	2.4	0.35	1.4	0.1	1.1E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

			· 1 · · · · · · · ·	J J	11-		
Группа	CO	NOx	CH	С	SO2	CH2O	БП
В	22	35	10	1.5	6	0.4	4.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_3 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{iod} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	С
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.426133333	0.877548	0	1.426133333	0.877548
0304	Азот (II) оксид (Азота оксид) (6)	0.231746667	0.14260155	0	0.231746667	0.14260155
0328	Углерод (Сажа, Углерод черный) (583)	0.074277778	0.0470115	0	0.074277778	0.0470115
0330	Сера диоксид (Ангидрид сернистый,	0.297111111	0.188046	0	0.297111111	0.188046

	Лист
OOC	120

	газ, Сера (IV) оксид) (516)					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.124777778	0.689502	0	1.124777778	0.689502
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002334	0.00000141	0	0.000002334	0.0000141
1325	Формальдегид (Метаналь) (609)	0.021222222	0.0125364	0	0.021222222	0.0125364
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.509333333	0.31341	0	0.509333333	0.31341

Источник загрязнения: 6001, Неорганизованный выброс Источник выделения: 6001 01, Линия дизтоплива

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Наименование оборудования: Запорно-регулирующая арматура (легкие углеводороды, двухфазные среды)

Наименование технологического потока: Поток №9

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.012996

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.365

Общее количество данного оборудования, шт., N = 10

Среднее время работы данного оборудования, час/год, $_{\bf T}$ = 792

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.365 \cdot 0.012996 \cdot 10 = 0.0474$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.0474 / 3.6 = 0.01317

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.01317 \cdot 60 / 100 = 0.007902$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600$ / $10^6=0.007902\cdot 792\cdot 3600$ / $10^6=0.0225301824$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.01317 \cdot 40 / 100 = 0.005268$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.005268 \cdot 792 \cdot 3600 / 10^6 = 0.0150201216$

Наименование оборудования: Фланцевые соединения (легкие углеводороды, двухфазные среды)

Наименование технологического потока: Поток №9

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.000396

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.05

Общее количество данного оборудования, шт., N = 20

Среднее время работы данного оборудования, час/год, $_{T}$ = 792

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.05 \cdot 0.000396 \cdot 20 = 0.000396$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.000396 / 3.6 = 0.00011

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.00011 \cdot 60 / 100 = 0.000066$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.000066 \cdot 792 \cdot 3600 / 10^6 = 0.0001881792$

	Лист
OOC	121

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.00011 \cdot 40 / 100 = 0.000044$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.000044 \cdot 792 \cdot 3600 / 10^6 = 0.0001254528$

Наименование оборудования: Насосы с сальниковыми уплотнениями (легкие и сжиженные углеводороды)

Наименование технологического потока: Поток №9

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.293

Общее количество данного оборудования, шт., N = 4

Среднее время работы данного оборудования, час/год, $_{T}$ = 792

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.293 \cdot 0.000396 \cdot 4 = 0.000464$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.000464 / 3.6 = 0.000129

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000129 \cdot 60 / 100 = 0.0000774$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600$ / $10^6=0.0000774\cdot 792\cdot 3600$ / $10^6=0.00022068288$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000129 \cdot 40 / 100 = 0.0000516$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.0000516 \cdot 792 \cdot 3600 / 10^6 = 0.00014712192$

Сводная таблица расчетов:

Оборудов.	Технологич.	Общее кол-	Время ра-
	поток	во, шт.	боты, ч/г
Запорно-регулирующая арматура (легкие	Поток №9	10	792
углеводороды, двухфазные среды)			
Фланцевые соединения (легкие	Поток №9	20	792
углеводороды, двухфазные среды)			
Насосы с сальниковыми уплотнениями	Поток №9	4	792
(легкие и сжиженные углеводороды)			

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.007902	0.0606784068
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.005268	0.0404522712

Источник загрязнения N 6002 Неорганизованный выброс Источник выделения N 001 01. Перемещение грунта бульдозерами

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Глина

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Вид работ: Выемочно-погрузочные работы

Влажность материала. %.VL = 2

Коэфф.. учитывающий влажность материала(табл.3.1.4). $k_7 = 0.8$

Доля пылевой фракции в материале(таблица 3.1.1). $k_1 = 0.05$

Доля пыли. переходящей в аэрозоль(таблица 3.1.1). $k_2 = 0.02$

Скорость ветра (среднегодовая). м/с.G3SR = 3.9

	Лист
000	122

Коэфф.учитывающий среднюю скорость ветра(табл.3.1.2).P3SR = 1.2

Скорость ветра (максимальная). м/с.G3 = 3.9

Коэфф. учитывающий максимальную скорость ветра(табл.3.1.2). $k_3 = 1.2$

Коэффициент. учитывающий местные условия($\underline{\text{таблица 3.1.3}}$). $k_4 = 0.3$

Размер куска материала. мм.G7 = 2.5

Коэффициент. учитывающий крупность материала(табл.3.1.5). $k_7 = 0.8$

Высота падения материала. м.GB = 1.5

Коэффициент. учитывающий высоту падения материала(табл.3.1.7).В' = 0.6

Суммарное количество перерабатываемого материала. т/час.G = 62.5

Максимальный разовый выброс. г/с (8)._G_ = $k_1 \cdot k_2 \cdot k_3 \cdot k_7 \cdot k_7 \cdot k_4 \cdot B' \cdot G \cdot 10^6 / 3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.8 \cdot 0.8 \cdot 0.3 \cdot 0.6 \cdot 62.5 \cdot 10^6 / 3600 = 2.4$

Количество рабочих часов в году.RT = 90

Валовый выброс. т/год._M_ = $k_1 \cdot k_1 \cdot P3SR \cdot k_7 \cdot k_7 \cdot k_4 \cdot B' \cdot G \cdot RT$ = $0.05 \cdot 0.02 \cdot 1.2 \cdot 0.8 \cdot 0.8 \cdot 0.3 \cdot 0.6 \cdot 62.5 \cdot 90$ = 0.7776

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в %:	2.4	0.7776
	70-20 (шамот. цемент. пыль цементного производства -		
	глина. глинистый сланец. доменный шлак. песок. клинкер.		
	зола. кремнезем. зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6003 Неорганизованный выброс Источник выделения N 001 01. Засыпка грунта бульдозерами

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки пылящих материалов.

Материал: Глина

Весовая доля пылевой фракции в материале (табл.3.1.1), К1 = 0.05

Доля пыли, переходящей в аэрозоль (табл. 3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Степень открытости:с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.9

Коэффициент, учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Влажность материала, %, VL = 2

Коэффициент, учитывающий влажность материала (табл.3.1.4), К5 = 0.8

Размер куска материала, мм, G7 = 2.5

Коэффициент, учитывающий крупность материала (табл.3.1.5), **К7 = 0.8**

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, G = 31.25

Суммарное количество перерабатываемого материала, т/год, G = 3000

Вид работ: Пересыпка

Максимальный разовый выброс , г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G$ т/час $\cdot 10^6 / 3600 \cdot = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 0.4 \cdot 31.25 \cdot 10^6 / 3600 = 2,667$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G$ т/год = $0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3000 = 0.9216$

Валовый выброс, т/год, M = 0.922

Итого выбросы:

	Лист
OOC	123

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %:	2.667	0.922
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6004.Неорганизованный выброс Источник выделения N 001 01.Уплотнение грунта катками и трамбовками

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

Материал: Глина

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Вид работ: Автотранспортные работы

Влажность материала. %.VL = 2

Коэфф.. учитывающий влажность материала(табл.3.1.4). k_7 = **0.8**

Число автомашин. работающих в карьере.N = 4

Число ходок (туда и обратно) всего транспорта в час.N1 = 4

Средняя протяженность 1 ходки в пределах карьера. км. $m{L} = {m{0.5}}$

Средняягрузопод'емность единицы автотранспорта. т.G1 = 5

Коэфф. учитывающий среднююгрузопод'емность автотранспорта(таблица 3.3.1).C1 = 0.8

Средняя скорость движения транспорта в карьере. км/ч. $G2 = N1 \cdot L / N = 4 \cdot 0.5 / 4 = 0.5$

Коэфф. учитывающий среднюю скорость движения транспорта в карьере(таблица 3.3.2).С2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых. 0.5 - для щебеночных. 0.1 - щебеночных. обработанных)(таблица 3.3.3). C3 = 1

Средняя площадь грузовой платформы. м2.F = 3

Коэфф.. учитывающий профиль поверхности материала (таблица 3.3.5-таблица 3.3.6). С4 = 1.45

Скорость обдувки материала. м/с.G5 = 3.5

Коэфф. учитывающий скорость обдувки материала(таблица 3.3.4).С5 = 1.2

Пылевыделение с единицы фактической поверхности материала. г/м2*с.Q2 = 0.004

Коэфф. учитывающий долю пыли. уносимой в атмосферу. C7 = 0.01

Количество рабочих часов в году.RT = 90

Максимальный разовый выброс пыли. г/сек (7)._G_ = (C1 · C2 · C3 · K5 · N1 · L · C7 · 1450 / 3600 + C4 · C5 · k_7 · Q2 · F ·

N) = (0.8 · 0.6 · 1 · 0.8 · 4 · 0.5 · 0.01 · 1450 / 3600 + 1.45 · 1.2 · 0.8 · 0.004 · 3 · 4) = 0.0699

Валовый выброс пыли. т/год._M_ = $0.0036 \cdot _{G} \cdot RT$ = $0.0036 \cdot 0.0699 \cdot 90$ = 0.02265

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в %:	0.0699	0.02265
	70-20 (шамот. цемент. пыль цементного производства -		
	глина. глинистый сланец. доменный шлак. песок. клинкер.		
	зола. кремнезем. зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6005.Неорганизованный выброс Источник выделения N 001 01.Пыление при передвижении автотранспорта

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

	Лист
000	124

2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

Материал: Глина

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Вид работ: Автотранспортные работы Влажность материала. %.VL = 2

Коэфф.. учитывающий влажность материала(табл.3.1.4). $k_7 = 0.8$

Число автомашин. работающих в карьере.N = 4

Число ходок (туда и обратно) всего транспорта в час.N1 = 4

Средняя протяженность 1 ходки в пределах карьера. км.L = 0.5

Средняягрузопод'емность единицы автотранспорта. т.G1 = 5

Коэфф. учитывающий среднююгрузопод'емность автотранспорта(таблица 3.3.1).C1 = 0.8

Средняя скорость движения транспорта в карьере. км/ч. $G2 = N1 \cdot L / N = 4 \cdot 0.5 / 4 = 0.5$

Коэфф. учитывающий среднюю скорость движения транспорта в карьере(таблица 3.3.2).С2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых. 0.5 - для щебеночных. 0.1 - щебеночных. обработанных)(таблица 3.3.3). C3 = 1

Средняя площадь грузовой платформы. м2.F = 3

Коэфф.. учитывающий профиль поверхности материала (таблица 3.3.5-таблица 3.3.6),C4 = 1.45

Скорость обдувки материала. м/с.G5 = 3.5

Коэфф. учитывающий скорость обдувки материала(таблица 3.3.4).C5 = 1.2

Пылевыделение с единицы фактической поверхности материала. г/м2*с.Q2 = 0.004

Коэфф. учитывающий долю пыли. уносимой в атмосферу.C7 = 0.01

Количество рабочих часов в году.RT = 90

N) = (0.8 · 0.6 · 1 · 0.8 · 4 · 0.5 · 0.01 · 1450 / 3600 + 1.45 · 1.2 · 0.8 · 0.004 · 3 · 4) = 0.0699

Валовый выброс пыли. т/год. $M_{-} = 0.0036 \cdot _{-}G_{-} \cdot RT = 0.0036 \cdot 0.0699 \cdot 90 = 0.02265$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в %:	0.0699	0.02265
	70-20 (шамот. цемент. пыль цементного производства -		
	глина. глинистый сланец. доменный шлак. песок. клинкер.		
	зола. кремнезем. зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6006.Неорганизованный выброс Источник выделения N 001 01. Пылящая поверхность бурильные работы

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы.КазЭКОЭКСП. 1996 г.

п.9.3. Расчет выбросов вредных веществ неорганизованными источниками Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических

указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей". Алма-Ата. НПО Амал. 1992г.

Вид работ: Расчет выбросов при буровых работах (п. 9.3.4)

Горная порода: Глина Плотность. $\tau/м3.P = 2.7$

Содержание пылевой фракции в буровой мелоче. доли единицы.B = 0.04

Доля пыли (от всей массы пылевой фракции). переходящая в аэрозоль. К7 = 0.02

Диаметр буримых скважин. м.D = 0.1683

Скорость бурения. м/ч.VB = 30

Общее кол-во буровых станков. шт.._*KOLIV*_ = 3

Количество одновременно работающих буровых станков. шт..N1 = 1

	Лист
OOC	125

Время работы одного станка. ч/год._ $T_{-} = 90$

Эффективность применяемых средств пылеподавления (определяется

экспериментально. либо принимается по справочным данных). доли единицы.N=0

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Валовый выброс. т/год (9.30)._M_ = $0.785 \cdot D^2 \cdot VB \cdot P \cdot _T \cdot B \cdot K7 \cdot (1-N) \cdot _KOLIV$ _ = $0.785 \cdot 0.1683^2 \cdot 30 \cdot 2.7 \cdot 90 \cdot 0.04 \cdot 0.02 \cdot (1-0) \cdot 3 = 0.389$

Максимальный из разовых выброс. г/с (9.31)._G_ = 0.785 \cdot $D^2 \cdot VB \cdot P \cdot B \cdot K7 \cdot (1-N) \cdot 1000 \cdot N1 / 3.6 = 0.785 \cdot 0.1683^2 \cdot 30 \cdot 2.7 \cdot 0.04 \cdot 0.02 \cdot (1-0) \cdot 1000 \cdot 1 / 3.6 = 0.4$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в %:	0.4	0.389
	70-20 (шамот. цемент. пыль цементного производства -		
	глина. глинистый сланец. доменный шлак. песок. клинкер.		
	зола. кремнезем. зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6007. Неорганизованный выброс Источник выделения N 001 01. Узел пересыпки грунта

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы.КазЭКОЭКСП. 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованными источниками Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей". Алма-Ата. НПО Амал. 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 1.0 - 3.0 %

Коэфф.. учитывающий влажность материала(табл.9.1).КО = 1.3

Скорость ветра в диапазоне: 5.0 - 7.0 м/с

Коэфф.. учитывающий среднегодовую скорость ветра(табл.9.2).K1 = 1.4

Местные условия: склады. хранилища открытые с 4-х сторон

Коэфф.. учитывающий степень защищенности узла(табл.9.4). К4 = 1

Высота падения материала. м.GB = 0.5

Коэффициент. учитывающий высоту падения материала(табл.9.5). К5 = 0.4

Удельное выделение твердых частиц с тонны материала. г/т.Q = 80

Эффективность применяемых средств пылеподавления (определяется

экспериментально. либо принимается по справочным данных), доли единицы. $N=\mathbf{0}$

Количество отгружаемого (перегружаемого) материала. $\tau/год.MGOD = 6000$

Максимальное количество отгружаемого (перегружаемого) материала . τ час.MH = 62.5

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Количество твердых частиц. выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс. т/год (9.24)._M_ = $K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^{-6} = 1.3 \cdot 1.4 \cdot 1 \cdot 0.4 \cdot 80 \cdot 6000 \cdot (1-0) \cdot 10^{-6} = 0.3494$

Максимальный из разовых выброс. г/с (9.25)._G_ = $K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.3 \cdot 1.4 \cdot 1 \cdot 0.4 \cdot 80 \cdot 62.5 \cdot (1-0) / 3600 = 1.011$

	Лист
OOC	126

Итого	Итого выбросы:				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
2908	Пыль неорганическая. содержащая двуокись кремния в %:	1.011	0.3494		
	70-20 (шамот. цемент. пыль цементного производства -				
	глина. глинистый сланец. доменный шлак. песок. клинкер.				
	зола. кремнезем. зола углей казахстанских месторождений)				
	(494)				

Источник загрязнения N 6008. Неорганизованный выброс Источник выделения N 001 01. Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/55

Расход сварочных материалов, кг/год, В = 210

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 3.5

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS = 16.99 в том числе:

Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 13.9

Валовый выброс, т/год (5.1), $_M_$ = GIS \cdot В / 10 = 13.9 \cdot 210 / 10 = 0.00292

Максимальный из разовых выброс, r/c (5.2), $_{-}G_{-}$ = GIS \cdot BMAX / 3600 = 13.9 \cdot 3.5 / 3600 = 0.01351

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.09 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 10 = $1.09 \cdot 210$ / 10 = 0.000229 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = $1.09 \cdot 3.5$ / 3600 = 0.00106

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1 Валовый выброс, т/год (5.1), $_M_=$ GIS \cdot B / 10 = 1 \cdot 210 / 10 = 0.00021 Максимальный из разовых выброс, г/с (5.2), $_G_=$ GIS \cdot BMAX / 3600 = 1 \cdot 3.5 / 3600 = 0.000972

Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1 Валовый выброс, т/год (5.1), $_M_=$ GIS \cdot B / 10 = 1 \cdot 210 / 10 = 0.00021 Максимальный из разовых выброс, г/с (5.2), $_G_=$ GIS \cdot BMAX / 3600 = 1 \cdot 3.5 / 3600 = 0.000972

._____

Газгі.

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.93

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10 = 0.93 \cdot 210 / 10 = 0.0001953$

Максимальный из разовых выброс, r/c (5.2), $_{G}$ = GIS \cdot BMAX / 3600 = 0.93 \cdot 3.5 / 3600 = 0.000904

	Лист
OOC	127

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 2.7 С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), _M_ = KNO2 \cdot GIS \cdot B / 10 = 0.8 \cdot 2.7 \cdot 210 / 10 = 0.000454 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 2.7 \cdot 3.5 / 3600 = 0.0021

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), _M_ = KNO \cdot GIS \cdot B / 10 = 0.13 \cdot 2.7 \cdot 210 / 10 = 0.0000737 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 2.7 \cdot 3.5 / 3600 = 0.000341

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 13.3 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 10 = 13.3 \cdot 210 / 10 = 0.002793 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = 13.3 \cdot 3.5 / 3600 = 0.01293

ИТОГО:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0123		0.01351	0.00292
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.01331	0.00292
0143	Марганец и его соединения /в пересчете на марганца (IV)	0.00106	0.000229
0143	оксид/ (327)	0.00100	0.000229
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0021	0.000454
0304	Азот (II) оксид (Азота оксид) (6)	0.000341	0.0000737
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01293	0.002793
0342	Фтористые газообразные соединения /в пересчете на фтор/	0.000904	0.0001953
	(617)		
0344	Фториды неорганические плохо растворимые - (алюминия	0.000972	0.00021
	фторид, кальция фторид, натрия гексафторалюминат)		
	(Фториды неорганические плохо растворимые /в пересчете		
	на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись кремния в %:	0.000972	0.00021
	70-20 (шамот, цемент, пыль цементного производства -		
	глина, глинистый сланец, доменный шлак, песок, клинкер,		
	зола, кремнезем, зола углей казахстанских месторождений)		
	(494)		

Источник загрязнения N 6009. Неорганизованный выброс Источник выделения N 001 01. Газовая резка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов 3В от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4), L=10

Способ расчета выбросов: по времени работы оборудования Время работы одной единицы оборудования, час/год, $_{\rm T}$ = 247.64

Удельное выделение сварочного аэрозоля, г/ч (табл. 4), GT = 131

	Лист
OOC	128

в том числе:

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение, г/ч (табл. 4), GT = 1.9

Валовый выброс 3B, т/год (6.1), $_M_ = GT \cdot _T_ / 10 = 1.9 \cdot 247.64 / 10 = 0.0004705$ Максимальный разовый выброс 3B, г/с (6.2), $_G_ = GT / 3600 = 1.9 / 3600 = 0.000528$

Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)

Удельное выделение, г/ч (табл. 4), GT = 129.1

Валовый выброс 3B, т/год (6.1), $_M_ = GT \cdot _T_ / 10 = 129.1 \cdot 247.64 / 10 = 0.032$ Максимальный разовый выброс 3B, г/с (6.2), $_G_ = GT / 3600 = 129.1 / 3600 = 0.03586$

Газы:

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение, г/ч (табл. 4), GT = 63.4

Валовый выброс 3B, т/год (6.1), $_M_ = GT \cdot _T_ / 10 = 63.4 \cdot 247.64 / 10 = 0.0157$ Максимальный разовый выброс 3B, г/с (6.2), G = GT / 3600 = 63.4 / 3600 = 0.0176

Расчет выбросов оксидов азота:

Удельное выделение, Γ/Ψ (табл. 4), GT = 64.1

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс 3B, т/год (6.1), $_{\rm M}$ = KNO2 \cdot GT \cdot _T $_{\rm M}$ 10 = 0.8 \cdot 64.1 \cdot 247.64 / 10 = 0.0127

Максимальный разовый выброс 3B, г/с (6.2), $_G_$ = KNO2 \cdot GT / 3600 = 0.8 \cdot 64.1 / 3600 = 0.01424

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс 3B, τ /год (6.1), _M_ = KNO · GT · _T_ / 10 = 0.13 · 64.1 · 247.64 / 10 = 0.002064

Максимальный разовый выброс 3B, r/c (6.2), $_{-}G_{-}$ = KNO \cdot GT / 3600 = 0.13 \cdot 64.1 / 3600 = 0.002315

итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа	0.03586	0.032
	оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на марганца (IV)	0.000528	0.0004705
	оксид/ (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.01424	0.0127
0304	Азот (II) оксид (Азота оксид) (6)	0.002315	0.002064
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0176	0.0157

Источник загрязнения N 6010. Неорганизованный выброс Источник выделения N 001 01. Пропано-бутановая сварка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, В = 36.12

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 1.003

Газы:

	Лист
OOC	129

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $M = KNO2 \cdot GIS \cdot B / 10 = 0.8 \cdot 15 \cdot 36.12 / 10 = 0.0004334$

Максимальный из разовых выброс, Γ /с (5.2), $G = KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 15 \cdot 1.003 / 3600 = 0.00334$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_$ = KNO \cdot GIS \cdot B / 10 = 0.13 \cdot 15 \cdot 36.12 / 10 = 0.0000704

Максимальный из разовых выброс, Γ/C (5.2), $_G_ = KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 15 \cdot 1.003 / 3600 = 0.000543$

итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00334	0.0004334
0304	Азот (II) оксид (Азота оксид) (6)	0.000543	0.0000704

Источник загрязнения N 6011. Неорганизованный выброс Источник выделения N 001 01. Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.08

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 1.33

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10 = 0.08 \cdot 45 \cdot 100 \cdot 100 \cdot 10 = 0.036$

Максимальный из разовых выброс 3B (5-6), Γ/C , $G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 1.33 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10) = 0.1663$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.2

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 3.33

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10 = 0.2 \cdot 45 \cdot 50 \cdot 100 \cdot 10 = 0.045$

Максимальный из разовых выброс 3B (5-6), г/с, _G_ = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 3.33 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10) = 0.208

Примесь: 2752 Уайт-спирит (1294*)

	Лист
OOC	130

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10 = 0.2 \cdot 45 \cdot 50 \cdot 100 \cdot 10 = 0.045$

Максимальный из разовых выброс 3B (5-6), Γ /c, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 3.33 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10) = 0.208$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0242

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 1.21

Марка ЛКМ: Лак БТ-99

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 56

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 96

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10 = 0.0242 \cdot 56 \cdot 96 \cdot 100 \cdot 10 = 0.013$

Максимальный из разовых выброс 3B (5-6), Γ /c, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 1.21 \cdot 56 \cdot 96 \cdot 100 / (3.6 \cdot 10) = 0.1807$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), τ /год, M_{-} = MS · F2 · FPI · DP · 10 = $0.0242 \cdot 56 \cdot 4 \cdot 100 \cdot 10 = 0.000542$

Максимальный из разовых выброс 3B (5-6), Γ/C , $_G_ = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 1.21 \cdot 56 \cdot 4 \cdot 100 / (3.6 \cdot 10) = 0.00753$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 1.33

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2.22

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10 = 1.33 \cdot 100 \cdot 100 \cdot 100 \cdot 10 = 1.33$

Максимальный из разовых выброс 3B (5-6), Γ /c, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10) = 2.22 \cdot 100 \cdot 100 \cdot 100 \cdot (3.6 \cdot 10) = 0.617$

Итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.208	0.094
2752	Уайт-спирит (1294*)	0.617	1.375542

Источник загрязнения N 6012. Неорганизованный выброс Источник выделения N 001 01. Шлифовальный станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального круга - 300 мм

	Лист
OOC	131

Фактический годовой фонд времени работы одной единицы оборудования, $\frac{1}{2}$ = 153.9

Число станков данного типа, шт., _KOLIV_ = 1

Число станков данного типа, работающих одновременно, шт., NS1 = 1

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, Γ/c (табл. 1), GV = 0.017

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), _M_ = $3600 \cdot \text{GV} \cdot \text{_T} \cdot \text{_KOLIV} / 10 = 3600 \cdot 0.017 \cdot 153.9 \cdot 1 / 10 = 0.00942$

Максимальный из разовых выброс, r/c (2), $_{-}G_{-}$ = KN · GV · NS1 = $0.2 \cdot 0.017 \cdot 1 = 0.0034$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, Γ/C (табл. 1), GV = 0.026

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), _M_ = $3600 \cdot \text{GV} \cdot \text{_T} \cdot \text{_KOLIV} / 10 = 3600 \cdot 0.026 \cdot 153.9 \cdot 1 / 10 = 0.0144$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NS1 = 0.2 \cdot 0.026 \cdot 1 = 0.0052$

итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0052	0.0144
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0034	0.00942

Источник загрязнения: 6013 Неорганизованный выброс

Источник выделения: 6013 01, Емкость для отработанного масла - 6м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС PK от 29.07.2011 №196

Нефтепродукт, *NP* = **Масла**

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 0.39

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 0.25

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, **BOZ = 2**

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 0.25

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 2

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=7

Коэффициент (Прил. 12), *KNP* = **0.00027**

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 6

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год (Прил. 13), *GHRI* = 0.27

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.00027 \cdot 1 = 0.0000729$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 6

Сумма Ghri*Knp*Nr, *GHR* = **0.0000729**

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 0.39 \cdot 0.1 \cdot 7 / 3600 = 0.0000758$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (0.25 \cdot 2 + 0.25 \cdot 2) \cdot 0.1 \cdot 10^{-6}$

 $10^{-6} + 0.0000729 = 0.000073$

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = **100**

	Лист
000	132

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 100 \cdot 0.000073 / 100 = 0.000073$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.0000758 / 100 = 0.0000758$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное (веретенное, машинное,	0.0000758	0.000073
	цилиндровое и др.) (716*)		

Источник загрязнения: 6014 – 6015 Неорганизованный выброс

Источник выделения: 6014 01, Емкость для диз. топлива - 34 м3 – 2 шт.

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, *NP* **= Дизельное топливо**

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.92

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 2.36

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, **BOZ = 5**

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 3.15

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 5

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=7

Коэффициент (Прил. 12), *KNP* = **0.0029**

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 34

Количество резервуаров данного типа, NR = 2

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, τ /год (Прил. 13), **GHRI = 0.27**

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.0029 \cdot 2 = 0.001566$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 68

Сумма Ghri*Knp*Nr, *GHR* = **0.001566**

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.92 \cdot 0.1 \cdot 7 / 3600 = 0.000762$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (2.36 \cdot 5 + 3.15 \cdot 5) \cdot 0.1 \cdot 10^{-6} + GHR = (2.36 \cdot 5 + 3.15 \cdot 5$

 $10^{-6} + 0.001566 = 0.00157$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.00157 / 100 = 0.001565604$

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 99.72 \cdot 0.000762 / 100 = 0.0007598664$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.00157 / 100 = 0.000004396$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.000762 / 100 = 0.0000021336$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
	Сероводород (Дигидросульфид) (518)	0.0000021336	0.000004396
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.0007598664	0.001565604

	Лист
000	133

Источник загрязнения N 6016 Неорганизованный выброс Источник выделения N 001, Устройство насыпи из щебня под буровую площадку

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, КОС = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.З.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Щебенка

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.04

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ke принимается равным 1

Степень открытости: с 4-х сторон Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 1.5

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 5.2

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), КЗ = 1.4

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 5.8

Суммарное количество перерабатываемого материала, τ /год, **GGOD** = **17774.45**

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5.8 \cdot 10^6 / 3600 \cdot (1-0) = 0.442$

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 0.442 \cdot 1 \cdot 60 / 1200 = 0.0221$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 17774.45 \cdot (1-0) = 3.484$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0221 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 3.484 = 3.484

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 3.484 = 1.394$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0221 = 0.00884$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00884	1.394
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		

	TIVICT
OOC	134

Пиот

шлак, песок, клинкер, зола, кремнезем, зола углей	
казахстанских месторождений) (494)	

Расчеты валовых выбросов при испытании

Источник загрязнения N 0001. Выхлопная труба Источник выделения N 001 01. Буровая установка ZJ-30 (или аналог)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 36

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 120

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 195.6

Температура отработавших газов T_{oc} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 195.6 * 120 = 0.20467584$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.20467584 / 0.359066265 = 0.570022472$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{cod} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.256	1.152	0	0.256	1.152
0304	Азот (II) оксид (Азота оксид) (6)	0.0416	0.1872	0	0.0416	0.1872
0328	Углерод (Сажа, Углерод черный) (583)	0.016666667	0.072	0	0.016666667	0.072
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.04	0.18	0	0.04	0.18
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.206666667	0.936	0	0.206666667	0.936

	Лист
OOC	135

0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.0000004	0.00000198	0	0.0000004	0.00000198
1325	Формальдегид (Метаналь) (609)	0.004	0.018	0	0.004	0.018
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.096666667	0.432	0	0.096666667	0.432

Источник загрязнения N 0002. Выхлопная труба Источник выделения N 001 01. Цементировочный агрегат ЦА-320

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it cod}$, т, 36

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 120

Удельный расход топлива на экспл./номин. режиме работы двигателя $\emph{b}_{"}$, г/кВт*ч, 195.6

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 195.6 * 120 = 0.20467584$$
 (A.3)

Удельный вес отработавших газов y_{oz} , кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.20467584 / 0.359066265 = 0.570022472$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

			<u> </u>				
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

		P -	-, ,		H 3	теления де		Perment
	Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б		26	40	12		5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{\ni i} * B_{\iota o \partial} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без	т/год без	% ouucmyu	г/сек	т/год
		очистки	очистки	очистки	с очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.256	1.152	0	0.256	1.152
0304	Азот (II) оксид (Азота оксид) (6)	0.0416	0.1872	0	0.0416	0.1872

		Лист
00	OC	136

0328	Углерод (Сажа, Углерод черный) (583)	0.016666667	0.072	0	0.016666667	0.072
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.04	0.18	0	0.04	0.18
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.206666667	0.936	0	0.206666667	0.936
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.0000004	0.00000198	0	0.0000004	0.00000198
1325	Формальдегид (Метаналь) (609)	0.004	0.018	0	0.004	0.018
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.096666667	0.432	0	0.096666667	0.432

Источник загрязнения N 0003. Выхлопная труба Источник выделения N 001 01. Дизельный генератор

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it zod}$, т, 50.69

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 257

Удельный расход топлива на экспл./номин. режиме работы двигателя $\emph{b}_{\scriptsize 9}$, г/кВт*ч, 0.033

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 0.033 * 257 = 0.000073954$$
 (A.3)

Удельный вес отработавших газов y_{oz} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.000073954 / 0.359066265 = 0.000205963$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки дО КаПИТаЛьНОГО ремонта

	P,m		4		т		
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	96	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитальНОГО ремонта

1	<u> </u>		' 1				
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_2 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

	Лист
000	137

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.548266667	1.62208	0	0.548266667	1.62208
0304	Азот (II) оксид (Азота оксид) (6)	0.089093333	0.263588	0	0.089093333	0.263588
0328	Углерод (Сажа, Углерод черный) (583)	0.035694444	0.10138	0	0.035694444	0.10138
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.085666667	0.25345	0	0.085666667	0.25345
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.442611111	1.31794	0	0.442611111	1.31794
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000857	0.000002788	0	0.000000857	0.000002788
1325	Формальдегид (Метаналь) (609)	0.008566667	0.025345	0	0.008566667	0.025345
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.207027778	0.60828	0	0.207027778	0.60828

Источник загрязнения N 0004. Выхлопная труба Источник выделения N 001 01. Силовой привод буровой установки

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 50.69

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 336

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт * ч, 0.033

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 0.033 * 336 = 0.000096687$$
 (A.3)

Удельный вес отработавших газов y_{oz} , кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.000096687 / 0.359066265 = 0.000269274$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального реМОНТА

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

		P	-,,		H J	от оптошни До		- F
Tpyllia CO NOX CH C 302 CH	Группа	CO	NOx	I CH	С	SO2	CH2O	БП

	ЛИСТ
OOC	138

Пиот

ı	Б	26	40	12	2	5	0.5	5.5E-5	l

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{_9} / 3600$ (1) Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{cod} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.7168	1.62208	0	0.7168	1.62208
0304	Азот (II) оксид (Азота оксид) (6)	0.11648	0.263588	0	0.11648	0.263588
0328	Углерод (Сажа, Углерод черный) (583)	0.046666667	0.10138	0	0.046666667	0.10138
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.112	0.25345	0	0.112	0.25345
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.578666667	1.31794	0	0.578666667	1.31794
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000112	0.000002788	0	0.00000112	0.000002788
1325	Формальдегид (Метаналь) (609)	0.0112	0.025345	0	0.0112	0.025345
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.270666667	0.60828	0	0.270666667	0.60828

	Лист
OOC	139

I Лицанана ТОО «ЭКО НАЙ	Приложение 2. IC» на природоохранное проектирование	
лицензия 100 «ЭКО ПАй	тс» на природоохранное проектирование	
		Лист
	OOC	140

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

21.05.2015 года 01748P

Товарищество с ограниченной ответственностью "ЭКО НАЙС" Выдана

060009, Республика Казахстан, Атырауская область, Атырау Г.А., г.Атырау,

Лесхоз, дом № 14., 13., БИН: 131040011648

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного коридического лица – в случае отсутствия бизнес-идентификационного номера у коридического лица/полностью фамилия, имя, отчество (в случае наличия),

индивидуальный идентификационный номер физического лица)

на занятне Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и

уведомлениях»)

Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

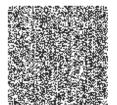
Комитет экологического регулирования, контроля и государственной инспекции в нефтегазовом комплексе. Лицензнар

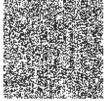
Министерство энергетики Республики Казахстан.

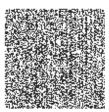
(полное наименование лицензиара)

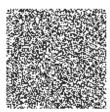
Руководитель

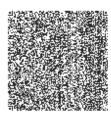
ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ

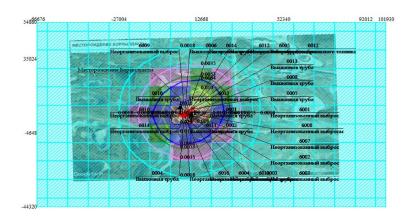

(фамилия, имя, отчество (в случае наличия)

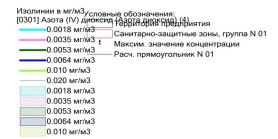

Дата первичной выдачи


(уполномоченное лицо)


Срок действия


Место выдачи г.Астана

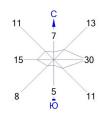


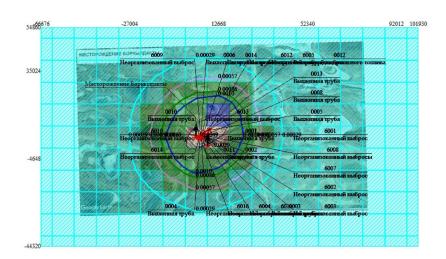


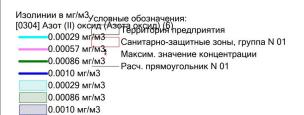
Приложение 3. Карты расчетов рассеивания

Город : 003 Атырау Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2 ПК ЭРА v3.0 Модель: МРК-2014 0301 Азота (IV) диоксид (Азота диоксид) (4)

9486 28458м. штаб 1:948600


Макс концентрация 0.1516567 ПДК достигается в точке х= 2750 y= 5270 При опасном направлении 116° и опасной скорости ветра 2.91 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.

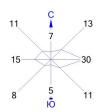

Лист

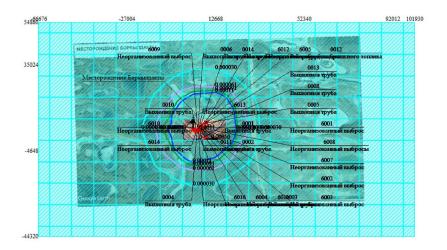

Город: 003 Атырау

Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2

ПК ЭРА v3.0 Модель: MPK-2014 0304 Азот (II) оксид (Азота оксид) (6)

Макс концентрация 0.0123222 ПДК достигается в точке x= 2750 y= 5270 При опасном направлении 116° и опасной скорости ветра 2.91 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.


	ЛИСТ
OOC	143


Пиот

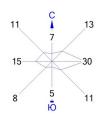
Город: 003 Атырау

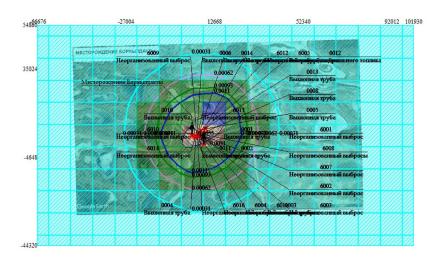
Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2 ПК ЭРА v3.0 Модель: МРК-2014

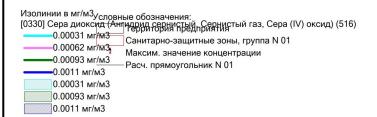
0328 Углерод (Сажа, Углерод черный) (583)

Изолинии в мг/м3условные обозначения:
[0328] Углерод (Сажа, Углерод ч8рНы предприятия

— 0.000030 мг/м3
— Санитарно-защитные зоны, группа N 01
Максим. значение концентрации Максим. значение концентрации •0.000091 м<u>г/м3</u> Расч. прямоугольник N 01 **-**0.00011 мг/м3 0.000030 мг/м3

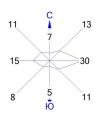

28458м. Масштаб 1:948600

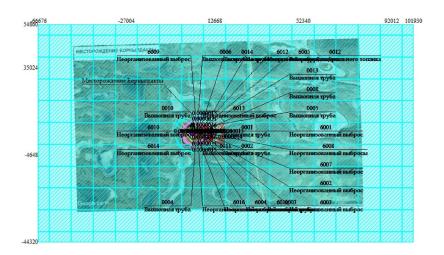

Макс концентрация 0.0070429 ПДК достигается в точке х= 2750 y= 5270 При опасном направлении 116° и опасной скорости ветра 2.93 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.

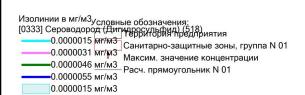

	Лист
OC	111

Город : 003 Атырау Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2

ПК ЭРА v3.0 Модель: MPK-2014 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

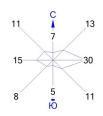

Макс концентрация 0.011035 ПДК достигается в точке x= 2750 y= 5270 При опасном направлении 69° и опасной скорости ветра 1.36 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.

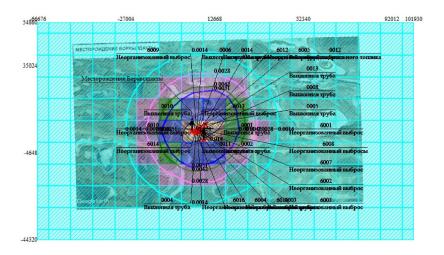

	Лист
OC	1/15

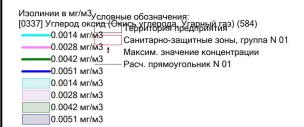

Город : 003 Атырау Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2

ПК ЭРА v3.0 Модель: MPK-2014

0333 Сероводород (Дигидросульфид) (518)

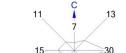

Макс концентрация 0.0007673 ПДК достигается в точке x= 2750 y= 5270 При опасном направлении 79° и опасной скорости ветра 1.35 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.


OOC 146


Город : 003 Атырау Объект : 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2

ПК ЭРА v3.0 Модель: MPK-2014

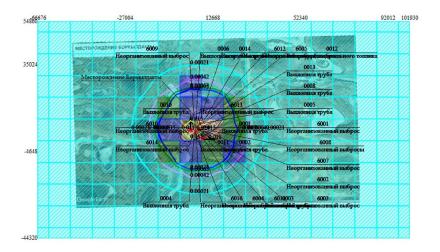
0337 Углерод оксид (Окись углерода, Угарный газ) (584)



28458м. 9486 Масштаб 1:948600

Макс концентрация 0.0048503 ПДК достигается в точке x= 2750 y= 5270 При опасном направлении 116° и опасной скорости ветра 2.91 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.

	Лист
OOC	147




Город: 003 Атырау

Объект: 0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м Вар.№ 2

ПК ЭРА v3.0 Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Макс концентрация $0.0800235\ \Pi$ ДК достигается в точке x= 2750 $\$ y= 5270 При опасном направлении 82° и опасной скорости ветра 5.2 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 168606 м, высота 99180 м, шаг расчетной сетки 9918 м, количество расчетных точек 18*11 Расчёт на существующее положение.

	ЛИСТ
OOC	148

```
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
  Расчет выполнен ТОО "ЭКО-НАЙС"
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
 | на программу: письмо № 140-09213/20и от 30.11.2020
Рабочие файлы созданы по следующему запросу:
Расчёт на существующее положение.
                                    Расчетный год:2023
 Город = Атырау_
                   Базовый год:2023
 Объект NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9 Режим предпр.: 1 - Основной
Примесь = 0301 ( Азота (IV) диоксид (Азота диоксид) (4) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0400000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь = 0304 ( Азот (II) оксид (Азота оксид) (6) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.4000000 ПДКс.с. = 0.0600000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
 Примесь = 0328 ( Углерод (Сажа, Углерод черный) (583) ) Коэф-т оседания = 3.0
ПДКм.р. = 0.1500000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь = 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
          Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь = 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь = 0337 ( Углерод оксид (Окись углерода, Угарный газ) (584) ) Коэф-т оседания = 1.0
ПДКм.р. = 5.0000000 ПДКс.с. = 3.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 4
Примесь = 0342 ( Фтористые газообразные соединения /в пересчете на фтор/ (617) )
          Коэф-т оседания = 1.0
ПДКм,р. = 0.0200000 ПДКс.с. = 0.0050000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
 Примесь = 0344 ( Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид,
          натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете
          на фтор/) (615) )
          Коэф-т оседания = 3.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0300000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
ПДКм.р. = 1.0000000 ( = ОБУВ) ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 0
 Примесь = 2754 ( Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на
          С); Растворитель РПК-265П) (10))
          Коэф-т оседания = 1.0
ПДКм.р. = 1.0000000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 4
 Примесь = 2908 ( Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
          цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
          зола, кремнезем, зола углей казахстанских месторождений) (494))
          Коэф-т оседания = 3.0
ПДКм.р. = 0.3000000 ПДКс.с. = 0.1000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
 Примесь = 2930 ( Пыль абразивная (Корунд белый, Монокорунд) (1027*) ) Коэф-т оседания = 3.0
ПДКм.р. = 0.0400000 ( = ОБУВ) ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 0
\Gammaр. суммации = 6007 ( 0301 + 0330 ) Коэфф. совместного воздействия = 1.00
Примесь - 0301 ( Азота (IV) диоксид (Азота диоксид) (4) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0400000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь - 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
         Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Гр.суммации = 6037 ( 0333 + 1325 ) Коэфф. совместного воздействия = 1.00
Примесь - 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь - 1325 ( Формальдегид (Метаналь) (609) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0500000 ПДКс.с. = 0.0100000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Гр.суммации = 6041 ( 0330 + 0342 ) Коэфф. совместного воздействия = 1.00
Примесь - 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
         Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь - 0342 ( Фтористые газообразные соединения /в пересчете на фтор/ (617) )
         Коэф-т оседания = 1.0
ПДКм.р. = 0.0200000 ПДКс.с. = 0.0050000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Гр.суммации = 6044 ( 0330 + 0333 ) Коэфф. совместного воздействия = 1.00
Примесь - 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
         Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь - 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Гр.суммации = 6359 ( 0342 + 0344 ) Коэфф. совместного воздействия = 1.00
Примесь - 0342 ( Фтористые газообразные соединения /в пересчете на фтор/ (617) )
         Коэф-т оселания = 1.0
ПДКм.р. = 0.0200000 ПДКс.с. = 0.0050000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
                                                                                                                                    Лист
```

OOC

149

```
Примесь - 0344 ( Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид,
         натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете
         на фтор/) (615))
          Коэф-т оседания = 3.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0300000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
 \Gammaр. суммации = __ПЛ ( 2902 + 2908 + 2930 ) Коэфф. совместного воздействия = 1.00
Примесь - 2902 ( Взвешенные частицы (116) ) Коэф-т оседания = 3.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.1500000 ПДКсг = 0.1500000 без учета фона. Кл.опасн. = 3
Примесь - 2908 ( Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
         цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
          зола, кремнезем, зола углей казахстанских месторождений) (494))
          Коэф-т оседания = 3.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.1500000 ПДКсг = 0.1500000 без учета фона. Кл.опасн. = 3
Примесь - 2930 (Пыль абразивная (Корунд белый, Монокорунд) (1027*) ) Коэф-т оседания = 3.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.1500000 ПДКсг = 0.1500000 без учета фона. Кл.опасн. = 0
2. Параметры города
 ПК ЭРА v3.0. Модель: МРК-2014
  Название: Атырау
  Коэффициент A = 200
  Скорость ветра Uмр = 5.2 м/с
  Средняя скорость ветра = 1.5 м/с
  Температура летняя = 30.9 град.С
   Температура зимняя = -10.9 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
   Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. : 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
        ПДКм.р для примеси 0301 = 0.2 мг/м3
   Коэффициент рельефа (КР): индивидуальный с источников
   Коэффициент оседания (F): индивидуальный с источников
                                    X1 | Y1 | X2 | Y2 |Alf| F | KP |Ди| Выброс
  Код |Тип| Н | D | Wo | V1 | Т
                     Объ.Пл Ист. |∼
                                                                                               ~|rp.|~~~|~~~|~~|~~r/c~~
020301 0001 T
               3.0 0.16 41.55 0.8354 450.0 7427.14 6503.00
                                                                         1.0 1.000 0 1.002667
020301 0002 T
               2.5 0.12 70.38 0.7310 450.0 6064.64 5426.56
                                                                         1.0 1.000 0 1.002667
020301 0003 T
               2.5 0.13 78.67 1.04 450.0 6369.90 5129.74
                                                                        1.0 1.000 0 0.8533334
               2.5 0.13 78.67 1.04 450.0 4484.38 4411.13
020301 0004 T
                                                                        1.0 1.000 0 0.8533334
               3.0 0.33 14.17 1.21 450.0 8724.27 8319.79
                                                                        1.0 1.000 0 1.426133
020301 0005 T
020301 0010 T
               2.0 0.50 0.270 0.0530 450.0 4204.37 5122.91
                                                                         1.0 1.000 0 0.0206000
020301 0011 T
               2.0 0.50 0.270 0.0530 450.0 5648.34 4974.81
                                                                         1.0 1.000 0 0.0206000
020301 0013 T
               2.0 0.50 1.74 0.3416 450.0 6844.15 7470.08
                                                                         1.0 1.000 0 0.0206000
020301 0014 T
               3.0 0.33 14.17 1.21 450.0 5852.19 6575.25
                                                                        1.0 1.000 0 1.426133
020301\ 6008\ \Pi 1 2.0
                               0.0 7553.02 5738.81
                                                        2.00
                                                               2.00 0 1.0 1.000 0 0.0021000
020301 6009 П1
                2.0
                               0.0
                                   4702.12
                                             6368.23
                                                        2.00
                                                               2.00 0 1.0 1.000 0 0.0142400
020301 6010 Π1 2.0
                                                               2.00 0 1.0 1.000 0 0.0033400
                               0.0 3369.24
                                            4850.22
                                                        2.00
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
        ПДКм.р для примеси 0301 = 0.2 \text{ мг/м}3
 - Для линейных и площадных источников выброс является суммарным по |
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                            _Их расчетные параметры__
|Номер| Код | М |Тип| Cm | Um | Xm |
|-п/п-|Объ.Пл Ист.|-----[м]---|-[доли ПДК]-|--[м/с]--|----[м]---|
  1 |020301 0001| 1.002667| T | 5.361405 | 6.44 |
                                                 81.3
  2 |020301 0002| 1.002667| T | 5.810893 | 9.26 |
  3 |020301 0003|
                 0.853333| T |
                               3.913809 | 11.70 |
                                                 92.2
  4 |020301 0004| 0.853333| T | 3.913587 | 11.70
                                                 92.2
  5 |020301 0005|
                 1.426133| T | 10.066095 | 5.40 |
                                                 68.8
  6 |020301 0010|
                 0.020600| T | 2.725206 | 1.45 |
                                                 15.5
  7 |020301 0011| 0.020600| T | 2.725206 | 1.45
                                                 15.5
  8 |020301 0013| 0.020600| T | 0.900105 | 3.01 |
                                                 29.2
                                                                                                                                  Лист
                                                                                                                      OOC
                                                                                                                                   150
```

```
9 |020301 0014| 1.426133| T | 10.066095 | 5.40 |
                                                                  0.002100| Π1 | 0.375023 | 0.50 |
      10 |020301 6008|
                                                                                                                                                                                          11.4
     11 020301 6009
                                                                   0.014240 | Π1 | 2.543016 | 0.50
                                                                                                                                                                                          11.4
     12 |020301 6010| 0.003340| \Pi1 | 0.596466 | 0.50 | 11.4 |
           Суммарный Ма= 6.645747 г/с
           Сумма См по всем источникам = 48.996902 долей ПДК
                                                                                                                                                                                                                                    Средневзвешенная опасная скорость ветра = 6.14 м/с
5. Управляющие параметры расчета
     ПК ЭРА v3.0. Модель: MPK-2014
         Город :003 Атырау.
         Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
         Вар.расч. :2 Расч.год: 2023 (СП)
                                                                                                                                         Расчет проводился 04.06.2023 17:37
         Сезон :ЛЕТО (температура воздуха 30.9 град.С)
         Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                               ПДКм.р для примеси 0301 = 0.2 \text{ мг/м3}
         Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
         Расчет по границе санзоны. Покрытие РП 001
         Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
         Средневзвешенная опасная скорость ветра Ucв= 6.14 м/с
6. Результаты расчета в виде таблицы.
     ПК ЭРА v3.0. Модель: MPK-2014
         Город :003 Атырау.
         Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
         Вар.расч.: 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
         Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                               ПДКм.р для примеси 0301 = 0.2 \text{ мг/м}3
         Расчет проводился на прямоугольнике 1
         с параметрами: координаты центра X= 17627, Y= 5270
                                      размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
         Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
         Заказан расчет на высоте Z = 3 метров
                                                                 _Расшифровка_обозначений_
                       | Qc - суммарная концентрация [доли ПДК] |
                          Сс - суммарная концентрация [мг/м.куб]
                          Фоп- опасное направл. ветра [ угл. град.] |
                         | Иоп- опасная скорость ветра [ м/с ] |
                          Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                       | Ки - код источника для верхней строки Ви |
          -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
 у= 54860 : Y-строка 1 Cmax= 0.004 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=175)
 x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
Qc: 0.001; 0.001; 0.002; 0.002; 0.002; 0.003; 0.004; 0.004; 0.004; 0.004; 0.003; 0.002; 0.002; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 92012:101930:
Qc: 0.001: 0.001:
Cc: 0.000: 0.000:
 у= 44942 : Y-строка 2 Cmax= 0.007 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=174)
 x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Qc: 0.001: 0.001: 0.002: 0.003: 0.003: 0.005: 0.006: 0.007: 0.007: 0.006: 0.004: 0.003: 0.002: 0.002: 0.001: 0.001:
\texttt{Cc}: 0.000; 0.000; 0.000; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
 x= 92012:101930:
Qc: 0.001: 0.001:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                         OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         151
```

```
Cc: 0.000: 0.000:
     у= 35024 : Y-строка 3 Cmax= 0.013 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=171)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Q_{\text{C}}: 0.001: 0.002: 0.002: 0.003: 0.005: 0.007: 0.010: 0.013: 0.013: 0.010: 0.007: 0.005: 0.003: 0.002: 0.002: 0.001: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.00
 Cc: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.003: 0.003: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
     x= 92012:101930:
 Oc: 0.001: 0.001:
 Cc: 0.000: 0.000:
     у= 25106 : Y-строка 4 Cmax= 0.028 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 :
                                                                                                                                  Qc: 0.001: 0.002: 0.003: 0.004: 0.007: 0.011: 0.020: 0.027: 0.028: 0.020: 0.011: 0.006: 0.004: 0.003: 0.002: 0.001: 0.004: 0.003: 0.004: 0.003: 0.004: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.0
 \texttt{Cc}: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.004: 0.005: 0.006: 0.004: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
     у= 15188 : Y-строка 5 Стах= 0.062 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=213)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
 Qc: 0.001: 0.002: 0.003: 0.005: 0.008: 0.017: 0.031: 0.047: 0.062: 0.032: 0.015: 0.008: 0.004: 0.003: 0.002: 0.001:
 \texttt{Cc}: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.006: 0.009: 0.012: 0.006: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 
 Фол: 97: 98: 99: 101: 104: 110: 122: 159: 213: 242: 252: 257: 259: 261: 263: 264:
 . Uon: 1.36: 1.36: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 2.32: 2.23: 1.60: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35: 1.35
                                                          : 0.001: 0.001: 0.001: 0.002: 0.005: 0.010: 0.017: 0.019: 0.010: 0.005: 0.002: 0.001: 0.001: 0.001:
                                                         : 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0005: 0005: 0005: 0005: 0005: 0005: 0005:
 Ки:
                                                            : 0.001; \ 0.001; \ 0.001; \ 0.002; \ 0.004; \ 0.007; \ 0.012; \ 0.012; \ 0.007; \ 0.004; \ 0.002; \ 0.001; \ 0.001; \ 0.001;
Ви:
                                                            : 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0002: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 00
 Ки:
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
 Фоп: 264: 265:
 Uon: 1.36: 1.36:
Ви:
 Ки:
 Ви:
                                                          :
 Ки:
                                                       :
     у= 5270 : Y-строка 6 Cmax= 0.152 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=116)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
 Qc: 0.001: 0.002: 0.003: 0.005: 0.009: 0.019: 0.040: 0.152: 0.071: 0.034: 0.017: 0.008: 0.005: 0.003: 0.002: 0.001:
 \texttt{Cc}: 0.000: 0.000: 0.001: 0.001: 0.002: 0.004: 0.008: 0.030: 0.014: 0.007: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 
 Фоп: 89: 89: 89: 88: 88: 87: 85: 116: 279: 275: 273: 272: 272: 271: 271: 271:
 Uon: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.35: 1.67: 2.91: 1.61: 1.61: 1.35: 1.35: 1.35: 1.35: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36: 1.36:
                                                         : 0.001: 0.001: 0.001: 0.003: 0.006: 0.013: 0.150: 0.027: 0.010: 0.005: 0.002: 0.001: 0.001: 0.001:
                                                         : 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0004: 0014: 0014: 0005: 0005: 0005: 0005: 0005:
                                                          : 0.001; 0.001; 0.001; 0.002; 0.004; 0.008; 0.001; 0.025; 0.009; 0.004; 0.002; 0.001; 0.001; 0.001;
 Ви:
Ки:
                                                            : 0005 : 0005 : 0005 : 0005 : 0005 : 0005 : 0005 : 6010 : 0001 : 0005 : 0014 : 0014 : 0014 : 0014 : 0014 :
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
 Фоп: 271: 271:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   152
```

```
Uon: 1.35: 1.35:
 Ки:
 Ви:
Ки:
                                                            :
   у= -4648 : Y-строка 7 Cmax= 0.050 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 19)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.001; \ 0.002; \ 0.003; \ 0.005; \ 0.008; \ 0.016; \ 0.031; \ 0.050; \ 0.039; \ 0.025; \ 0.014; \ 0.007; \ 0.004; \ 0.003; \ 0.002; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001;
 \texttt{Cc}: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.006: 0.010: 0.008: 0.005: 0.003: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
   y=-14566: Y-строка 8 Cmax= 0.022 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 11)
     x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -27004: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -
 Qc: 0.001; \ 0.002; \ 0.003; \ 0.004; \ 0.006; \ 0.010; \ 0.017; \ 0.022; \ 0.021; \ 0.015; \ 0.009; \ 0.006; \ 0.004; \ 0.002; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001;
 \texttt{Cc}: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.003: 0.004: 0.004: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 92012:101930:
     -----:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
   у=-24484 : Y-строка 9 Cmax= 0.011 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.001; 0.002; 0.002; 0.003; 0.004; 0.006; 0.009; 0.011; 0.010; 0.008; 0.006; 0.004; 0.003; 0.002; 0.002; 0.001; 0.001; 0.001; 0.002; 0.002; 0.002; 0.001; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.0
 C_c: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
     у=-34402 : Y-строка 10 Cmax= 0.006 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 6)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.001: 0.001: 0.002: 0.002: 0.003: 0.004: 0.005: 0.006: 0.006: 0.005: 0.004: 0.003: 0.002: 0.002: 0.001: 0.001:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
   x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
   у=-44320 : Y-строка 11 Cmax= 0.003 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 4)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.001; \ 0.001; \ 0.001; \ 0.002; \ 0.002; \ 0.002; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.002; \ 0.002; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.001;
 \texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
     x= 92012:101930:
 Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   153
```

```
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
           Координаты точки : X = 2750.0 \text{ м}, Y = 5270.0 \text{ м}, Z = 3.0 \text{ м}
 Максимальная суммарная концентрация | Cs= 0.1516567 доли ПДКмр|
                                          0.0303313 мг/м3
   Достигается при опасном направлении 116 град.
                          и скорости ветра 2.91 м/с
Всего источников: 12. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                         _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в% Сум. % Коэф.влияния |
   ---|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=С/М ---|
  1 |020301 0004| T | 0.8533| 0.149697 | 98.7 | 98.7 | 0.175425947 |
                                                                -----
                            В сумме = 0.149697 98.7
       Суммарный вклад остальных = 0.001960 1.3
                                                                                                                                      7. Суммарные концентрации в узлах расчетной сетки.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :003 Атырау.
     Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
     Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
     Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                  ПДКм.р для примеси 0301 = 0.2 \text{ мг/м}3
                   _Параметры_расчетного_прямоугольника_No 1_
      \mid Координаты центра : X= 17627 м; Y= 5270 \mid
          Длина и ширина : L= 168606 м; B= 99180 м |
         Шаг сетки (dX=dY) : D= 9918 м
                                                                                              Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
     Заказан расчет на высоте Z = 3 метров
   (Символ ∧ означает наличие источника вблизи расчетного узла)
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    1-| 0.001 0.001 0.002 0.002 0.002 0.003 0.004 0.004 0.004 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 |-1
2 - \mid 0.001 \ 0.001 \ 0.002 \ 0.003 \ 0.003 \ 0.003 \ 0.005 \ 0.006 \ 0.007 \ 0.006 \ 0.004 \ 0.003 \ 0.002 \ 0.002 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \mid -2 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0
3-| 0.001 0.002 0.002 0.003 0.005 0.007 0.010 0.013 0.013 0.010 0.007 0.005 0.003 0.002 0.002 0.001 0.001 0.001 |- 3
4-| 0.001 0.002 0.003 0.004 0.007 0.011 0.020 0.027 0.028 0.020 0.011 0.006 0.004 0.003 0.002 0.001 0.001 0.001 |- 4
5 - \mid 0.001 \ 0.002 \ 0.003 \ 0.005 \ 0.008 \ 0.017 \ 0.031 \ 0.047 \ 0.062 \ 0.032 \ 0.015 \ 0.008 \ 0.004 \ 0.003 \ 0.002 \ 0.001 \ 0.001 \ | -5
6-C\ 0.001\ 0.002\ 0.003\ 0.005\ 0.009\ 0.019\ 0.040\ 0.152\ 0.071\ 0.034\ 0.017\ 0.008\ 0.005\ 0.003\ 0.002\ 0.001\ 0.001\ 0.001\ C-6
7-| 0.001 0.002 0.003 0.005 0.008 0.016 0.031 0.050 0.039 0.025 0.014 0.007 0.004 0.003 0.002 0.001 0.001 0.001 |-7
8 - |\ 0.001\ 0.002\ 0.003\ 0.004\ 0.006\ 0.010\ 0.017\ 0.022\ 0.021\ 0.015\ 0.009\ 0.006\ 0.004\ 0.002\ 0.002\ 0.001\ 0.001\ | -8
9-| 0.001 0.002 0.002 0.003 0.004 0.006 0.009 0.011 0.010 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.001 |- 9
10-| 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.006 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 |-10
11 - \mid 0.001 \; 0.001 \; 0.001 \; 0.002 \; 0.002 \; 0.003 \; 0.003 \; 0.003 \; 0.003 \; 0.003 \; 0.003 \; 0.003 \; 0.002 \; 0.002 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001 \; 0.001
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
       В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.1516567 долей ПДКмр
                                                = 0.0303313 \text{ M}\text{F/M}
Достигается в точке с координатами: Хм = 2750.0 м
     При опасном направлении ветра: 116 град.
 и "опасной" скорости ветра : 2.91 м/с
9. Результаты расчета по границе санзоны.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :003 Атырау.
                                                                                                                                                                                                                                                                                                     Лист
                                                                                                                                                                                                                                                                          OOC
                                                                                                                                                                                                                                                                                                       154
```

```
Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
                  Вар.расч. : 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
                  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                                                         ПДКм.р для примеси 0301 = 0.2 \text{ мг/м}3
                  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
                  Всего просчитано точек: 66
                  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                  Заказан расчет на высоте Z = 3 метров
                                                                                                                  __Расшифровка_обозначений_
                                           | Qc - суммарная концентрация [доли ПДК]
                                             | Сс - суммарная концентрация [мг/м.куб]
                                                Фоп- опасное направл. ветра [ угл. град.] |
                                            | Uon- опасная скорость ветра [ м/с ] |
| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                                           Ки - код источника для верхней строки Ви
  y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                                         x=-66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
  Q_{\text{C}}: 0.060; 0.060; 0.063; 0.063; 0.063; 0.064; 0.064; 0.064; 0.064; 0.062; 0.062; 0.061; 0.061; 0.061; 0.065; 0.062; 0.062; 0.062; 0.062; 0.061; 0.061; 0.061; 0.061; 0.061; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.062; 0.06
Cc: 0.012; 0.012; 0.013; 0.013; 0.013; 0.013; 0.013; 0.013; 0.013; 0.013; 0.012; 0.012; 0.012; 0.012; 0.012; 0.011; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.0
Фол: 63: 64: 80: 80: 81: 97: 98: 99: 99: 163: 163: 164: 165: 166: 207:
Uon: 2.32: 2.32: 2.14: 2.14: 2.17: 1.61: 1.61: 1.61: 1.60: 2.31: 2.31: 2.31: 2.32: 2.32: 2.11:
Ви: 0.014: 0.014: 0.018: 0.018: 0.018: 0.026: 0.027: 0.027: 0.027: 0.025: 0.025: 0.025: 0.024: 0.024: 0.017:
Ки: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0
Ви: 0.013: 0.013: 0.013: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017
K_{\text{H}}: 0002: 0002: 0002: 0002: 0002: 0002: 0001: 0001: 0001: 0001: 0002: 0002: 0002: 0002: 0002: 0002: 0014: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 
  y = \ 44942; \ 16434; \ 16455; \ 16459; \ 16449; \ 16422; \ 16380; \ 16324; \ 16254; \ 16172; \ 11292; \ 11251; \ 11152; \ 11045; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 10931; \ 1093
     x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
Q_{\text{C}}: 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.055; \ 0.051; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 0.050; \ 
C_{\text{C}}: 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 
Фоп: 207: 208: 208: 209: 209: 210: 211: 211: 212: 213: 248: 248: 248: 249: 250:
Uon: 2.13: 2.12: 2.09: 2.08: 2.08: 2.07: 2.08: 2.07: 2.07: 2.07: 1.95: 1.96: 1.96: 1.95: 1.94:
Ви: 0.017; 0.016; 0.017; 0.017; 0.017; 0.017; 0.017; 0.017; 0.017; 0.017; 0.017; 0.016; 0.015; 0.015; 0.015;
\mathbf{Ku}: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 000
Ви: 0.011: 0.012: 0.011: 0.012: 0.011: 0.012: 0.011: 0.012: 0.011: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012
K_{\text{H}}: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 
  y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
  x=-66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
        Qc: 0.050: 0.050: 0.050: 0.050: 0.050: 0.050: 0.050: 0.050: 0.054: 0.054: 0.054: 0.054: 0.054: 0.069: 0.070: 0.090:
Cc: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.011: 0.011: 0.014: 0.014: 0.018:
Фол: 250: 251: 251: 252: 252: 253: 253: 277: 277: 278: 278: 279: 301: 301: 338:
Uоп: 1.95: 1.94: 1.96: 1.96: 1.93: 1.98: 1.98: 1.62: 1.61: 1.61: 1.61: 2.32: 2.32: 2.92:
Ви: 0.015: 0.015: 0.014: 0.015: 0.014: 0.014: 0.014: 0.018: 0.018: 0.018: 0.019: 0.019: 0.024: 0.025: 0.031:
K_{\text{M}}: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0014: 0014: 0014: 0014: 0014: 0002: 0002: 0003: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 
Ви: 0.012: 0.012: 0.012: 0.012: 0.012: 0.013: 0.013: 0.013: 0.015: 0.015: 0.016: 0.016: 0.016: 0.022: 0.022: 0.029:
Ки: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0001: 0001: 0001: 0001: 0001: 0014: 0014: 0002:
  y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
                          x=-66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
                       Qc: 0.090: 0.090: 0.078: 0.077: 0.077: 0.077: 0.066: 0.066: 0.065: 0.065: 0.064: 0.064: 0.064: 0.060: 0.060:
Cc: 0.018; \ 0.018; \ 0.016; \ 0.015; \ 0.015; \ 0.015; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013; \ 0.013;
Фол: 339: 340: 27: 27: 28: 29: 43: 44: 44: 45: 46: 46: 47: 59: 59:
Uon: 2.92: 2.92: 2.31: 2.31: 2.32: 2.31: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2.32: 2
Ви: 0.031: 0.031: 0.019: 0.019: 0.019: 0.019: 0.015: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014:
K_{\text{H}}: 0003: 0003: 0002: 0002: 0002: 0002: 0002: 0014: 0002: 0014: 0014: 0002: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 0014: 
Ви: 0.029: 0.029: 0.017: 0.017: 0.017: 0.016: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.013: 0.013:
Ки: 0002: 0002: 0014: 0014: 0014: 0014: 0002: 0014: 0002: 0002: 0002: 0014: 0002: 0002: 0002: 0002:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                155
```

```
y= 15188: 894: 1010: 1131: 1255: 1380:
x= -66676: -2709: -2757: -2791: -2809: -2812:
     .--:-----:----:----:----:----:
Qc: 0.060: 0.059: 0.059: 0.059: 0.059: 0.060:
Cc: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012:
Фоп: 60: 61: 61: 62: 63: 63:
Uon: 2.33: 2.33: 2.32: 2.31: 2.31: 2.32:
Ви: 0.014: 0.013: 0.014: 0.014: 0.014: 0.014:
Ки: 0014: 0014: 0014: 0014: 0014: 0014:
Ви: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013:
Ки: 0002: 0002: 0002: 0002: 0002: 0002:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 7914.0 \text{ м}, Y = 765.0 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0896622 доли ПДКмр|
                       0.0179324 мг/м3
 Достигается при опасном направлении 340 град.
           и скорости ветра 2.92 м/с
Всего источников: 12. В таблице заказано вкладчиков не более чем с 95% вклада
                               _ВКЛАДЫ_ИСТОЧНИКОВ
--|Объ.Пл Ист.|---|--- b=C/M ---|
 1 |020301 0003| T | 0.8533| 0.030682 | 34.2 | 34.2 | 0.035955735
 2 |020301 0002| T |
                    1.0027 | 0.028968 | 32.3 | 66.5 | 0.028890388
 3 | 020301 0014 | T | 1.4261 | 0.026736 | 29.8 | 96.3 | 0.018747367 |
             B cymme = 0.086386 96.3
   Суммарный вклад остальных = 0.003276 3.7
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
        ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
       |Тип| H | D | Wo | V1 | Т
                                    X1 |
                                            Y1
                                                   X2 | Y2
                                                               |Alf| F | КР |Ди| Выброс
Объ.Пл Ист.|~~~|~~м~~||~~м~~|~м/с~|~м3/с~~|градС~~
                                                                                              ~~|rp.|~~~|~~~|~~r/c~~
                                                                         1.0 1.000 0 0.1629333
020301 0001 T
              3.0 0.16 41.55 0.8354 450.0 7427.14 6503.00
020301 0002 T
               2.5 0.12 70.38 0.7310 450.0 6064.64 5426.56
                                                                         1.0 1.000 0 0.1629333
               2.5 0.13 78.67 1.04 450.0 6369.90 5129.74
020301 0003 T
                                                                        1.0 1.000 0 0.1386667
              2.5 0.13 78.67 1.04 450.0 4484.38 4411.13 3.0 0.33 14.17 1.21 450.0 8724.27 8319.79
                                                                        1.0 1.000 0 0.1386667
020301 0004 T
020301 0005 T
                                                                        1.0 1.000 0 0.2317467
               2.0 0.50 0.270 0.0530 450.0 4204.37 5122.91
020301 0010 T
                                                                         1.0 1.000 0 0.0033475
020301 0011 T
               2.0 0.50 0.270 0.0530 450.0 5648.34 4974.81
                                                                         1.0 1.000 0 0.0033475
020301 0013 T
               2.0 0.50 1.74 0.3416 450.0 6844.15 7470.08
                                                                        1.0 1.000 0 0.0033475
020301 0014 T
              3.0 0.33 14.17 1.21 450.0 5852.19 6575.25
                                                                        1.0 1.000 0 0.2317467
020301 6008 П1 2.0
                               0.0 7553.02 5738.81
                                                       2.00
                                                               2.00 0 1.0 1.000 0 0.0003410
020301 6009 П1 2.0
                                                               2.00 0 1.0 1.000 0 0.0023150
                               0.0 4702.12 6368.23
                                                       2.00
020301 6010 \Pi1 2.0
                               0.0 3369.24 4850.22
                                                       2.00
                                                               2.00 0 1.0 1.000 0 0.0005430
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
        ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
- Для линейных и площадных источников выброс является суммарным по |
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                           _Их расчетные параметры_
                                                                                                                                  Лист
                                                                                                                      OOC
                                                                                                                                   156
```

```
|Номер| Код |
                                                   |Тип |
                                                                      Cm | Um | Xm
  -п/п-|Объ.Пл Ист.|--
                                                      ---|---|-[доли ПДК]-|--[м/с]--|-
                                                                                                                      --[м]---|
    1 |020301 0001| 0.162933| T | 0.435614 | 6.44 |
                                                                                                                 81.3
                                       0.162933| T |
    2 |020301 0002|
                                                                      0.472135 | 9.26 |
                                                                                                                 82.1
    3 |020301 0003|
                                         0.138667 T
                                                                       0.317997 | 11.70
    4 |020301 0004|
                                        0.138667| T | 0.317979 | 11.70 |
                                                                                                                92.2
                                        0.231747|\>T\>\>|\>
                                                                       0.817870 | 5.40 |
    5 |020301 0005|
                                                                                                                 68.8
    6 |020301 0010|
                                         0.003347| T |
                                                                       0.221423 | 1.45
    7 |020301 0011|
                                         0.003347 T | 0.221423 | 1.45
                                                                                                                 15.5
                                         0.003347| T |
    8 | 020301 0013 |
                                                                       0.073134 | 3.01
                                                                                                                 29.2
    9 |020301 0014|
                                         0.231747| T | 0.817870 | 5.40
                                                                                                                 68.8
   10 \ |020301 \ 6008| \quad 0.000341| \ \Pi1 \ | \quad 0.030448 \ | \quad 0.50
                                                                                                             | 11.4
   11 |020301 6009|
                                          0.002315|\Pi 1| 0.206709| 0.50|
                                                                                                                    11.4
   12 |020301 6010|
                                         0.000543| Π1 | 0.048485 | 0.50 | 11.4 |
      Суммарный Мq= 1.079935 г/с
      Сумма См по всем источникам = 3.981088 долей ПДК
      Средневзвешенная опасная скорость ветра =
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :003 Атырау.
      Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
      Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
      Сезон :ЛЕТО (температура воздуха 30.9 град.С)
      Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
                   ПДКм.р для примеси 0304 = 0.4 мг/м3
      Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
      Расчет по границе санзоны. Покрытие РП 001
      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
      Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
      Средневзвешенная опасная скорость ветра Ucв= 6.14 м/c
6. Результаты расчета в виде таблицы.
   ПК ЭРА v3.0. Модель: MPK-2014
      Город :003 Атырау.
      Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
      Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
      Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
                   ПДКм.р для примеси 0304 = 0.4 мг/м3
      Расчет проводился на прямоугольнике 1
      с параметрами: координаты центра X= 17627, Y= 5270
                        размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
      Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
      Заказан расчет на высоте Z = 3 метров
                                         _Расшифровка_обозначений_
               | Qc - суммарная концентрация [доли ПДК] |
                Сс - суммарная концентрация [мг/м.куб]
               Фоп- опасное направл. ветра [ угл. град.] |
                Uоп- опасная скорость ветра [ м/с ] |
               Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
              | Ки - код источника для верхней строки Ви |
     | -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
у= 54860 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=175)
x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
у= 44942 : Y-строка 2 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=174)
                                                                                                                                                                                                                                                                                                                Лист
                                                                                                                                                                                                                                                                                  OOC
                                                                                                                                                                                                                                                                                                                 157
```

```
x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
O_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
     x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
     у= 35024 : Y-строка 3 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=171)
     x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7
                                                                              O_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
     x= 92012:101930:
Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
     у= 25106: Y-строка 4 Cmax= 0.002 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1266
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
     x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
     у= 15188: У-строка 5 Стах= 0.005 долей ПДК (х= 12668.0, z= 3.0; напр.ветра=213)
     x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -27004: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -
Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.003; \ 0.004; \ 0.005; \ 0.003; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
     x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
     у= 5270 : Y-строка 6 Cmax= 0.012 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=116)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.002; \ 0.003; \ 0.012; \ 0.006; \ 0.003; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.005: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
     у= -4648 : Y-строка 7 Cmax= 0.004 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 19)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.003: 0.004: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\texttt{Cc}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.001; 0.001; 0.002; 0.001; 0.001; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
     x= 92012:101930:
Qc: 0.000: 0.000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          158
```

```
Cc: 0.000: 0.000:
    у=-14566: Y-строка 8 Cmax= 0.002 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 11)
    x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_c: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 92012:101930:
Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    у=-24484 : Y-строка 9 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
                                                                                                                                                    Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у=-34402 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 6)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\texttt{Cc}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
  x= 92012:<del>101930</del>:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у=-44320 : Y-строка 11 Стах= 0.000 долей ПДК (х= 2750.0, z= 3.0; напр.ветра= 4)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
                                                                                                                 Q_C: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                                     Координаты точки : X = 2750.0 \text{ м}, Y = 5270.0 \text{ м}, Z = 3.0 \text{ м}
    Максимальная суммарная концентрация | Cs= 0.0123222 доли ПДКмр|
                                                                                                                                                                                                      0.0049289 мг/м3
              Достигается при опасном направлении 116 град.
                                                                                                                       и скорости ветра 2.91 м/с
Всего источников: 12. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                                                                                                                                                                                                                                          _ВКЛАДЫ_ИСТОЧНИКОВ
  | Ном.| Код | Тип| Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
            ----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
            1 \mid \hspace{-0.075cm} 020301 \mid \hspace{-0.075cm} 0004 \mid T \mid \hspace{0.5cm} 0.1387 \mid \hspace{-0.075cm} 0.012163 \mid \hspace{-0.075cm} 98.7 \mid \hspace{-0.075cm} 98.7 \mid \hspace{-0.075cm} 0.087712720 \mid \hspace{-0.075cm} \hspace{-0.07
                                                                                                                                      B cymme = 0.012163 98.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Суммарный вклад остальных = 0.000159 1.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         7. Суммарные концентрации в узлах расчетной сетки.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         159
```

```
Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
      ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
       _Параметры_расчетного_прямоугольника_No 1__
   Координаты центра : X= 17627 м; Y= 5270 |
   Длина и ширина : L= 168606 м; B= 99180 м
  | Шаг сетки (dX=dY) : D= 9918 м
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
 (Символ ^ означает наличие источника вблизи расчетного узла)
  1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
 4-| . . . . . 0.001 0.001 0.002 0.002 0.002 0.001 0.000 . . . . . . . . . |-4
5-| . . . . 0.001 0.001 0.003 0.004 0.005 0.003 0.001 0.001 .
. . . 0.001 0.001 0.001 0.002 0.002 0.001 0.001 . .
9-| . . . . . 0.001 0.001 0.001 0.001 0.001 0.000 . . .
. |-10
1-11
        2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
  В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0123222 долей ПДКмр
                 = 0.0049289 \text{ M}\text{г/m}3
Достигается в точке с координатами: Хм = 2750.0 м
 ( Х-столбец 8, Y-строка 6) Ум = 5270.0 м
          На высоте Z = 3.0 м
При опасном направлении ветра: 116 град.
и "опасной" скорости ветра : 2.91 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
 Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
 Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
      ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 66
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
              _Расшифровка_обозначений_
     | Qc - суммарная концентрация [доли ПДК] |
     Сс - суммарная концентрация [мг/м.куб]
     | Фоп- опасное направл. ветра [ угл. град.] |
     | Иоп- опасная скорость ветра [ м/с ] |
     Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
     | Ки - код источника для верхней строки Ви |
                                                                                                          Лист
                                                                                               OOC
                                                                                                          160
```

ПК ЭРА v3.0. Модель: MPK-2014

```
y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                                                        x=-66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
              Qc: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 y= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
         x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
 Q_{C}: 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.0
C_c: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
             x=-66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.006: 0.006: 0.007:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003:
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
                                  x = -66676; \ 7914; \ 2739; \ 2625; \ 2501; \ 2375; \ -361; \ -465; \ -588; \ -707; \ -820; \ -926; \ -1022; \ -2501; \ -2570;
              Qc: 0.007: 0.007: 0.006: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.0
 y= 15188: 894: 1010: 1131: 1255: 1380:
 x= -66676: -2709: -2757: -2791: -2809: -2812:
  -----;----;-----;
Qc: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
             Координаты точки : X = 7914.0 \text{ м}, Y = 765.0 \text{ м}, Z = 3.0 \text{ м}
 Максимальная суммарная концентрация | Cs= 0.0072851 доли ПДКмр|
                                             | 0.0029140 мг/м3 |
   Достигается при опасном направлении 340 град.
                            и скорости ветра 2.92 м/с
Всего источников: 12. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                              __ВКЛАДЫ_ИСТОЧНИКОВ_
|
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
  ----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
   1 |020301 0003| T | 0.1387| 0.002493 | 34.2 | 34.2 | 0.017977813 |
   2 |020301 0002| T | 0.1629| 0.002354 | 32.3 | 66.5 | 0.014445272
   3 | 020301 0014 | T |       0.2317 |     0.002172 |   29.8 |   96.3 | 0.009373648 |
                                В сумме = 0.007019 96.3
        Суммарный вклад остальных = 0.000266 3.7
3. Исходные параметры источников.
    ПК ЭРА v3.0. Модель: MPK-2014
      Город :003 Атырау.
      Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
      Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
      Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                     ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
      Коэффициент рельефа (КР): индивидуальный с источников
       Коэффициент оседания (F): индивидуальный с источников
     ~~M~~~~|rp.|~~~|~~~|~~|~~r/c~~
                                                                                                                                                ~|~~~M~~~~|~~
                                                                                                                                                                                        ~~M~~~~|~
                                                                                                                                                                                    3.0 1.000 0 0.0652778
3.0 1.000 0 0.0652778
                                                                                                                                                                                                                                                                                                                                 Лист
                                                                                                                                                                                                                                                                                                  OOC
                                                                                                                                                                                                                                                                                                                                  161
```

```
020301 0003 T
               2.5 0.13 78.67
                              1.04 450.0
                                          6369.90
                                                   5129.74
                                                                         3.0 1.000 0 0.0555556
020301 0004 T
               2.5 0.13 78.67
                              1.04 450.0
                                          4484.38
                                                   4411.13
                                                                         3.0 1.000 0 0.0555556
               3.0 0.33 14.17 1.21 450.0 8724.27
020301 0005 T
                                                                         3.0 1.000 0 0.0742778
                                                  8319.79
               2.0 0.50 0.270 0.0530 450.0 4204.37 5122.91
020301 0010 T
                                                                          3.0 1.000 0 0.0017500
020301 0011 T
               2.0 0.50 0.270 0.0530 450.0 5648.34 4974.81
                                                                          3.0 1.000 0 0.0017500
020301 0013 T
               2.0 0.50 1.74 0.3416 450.0 6844.15 7470.08
                                                                          3.0 1.000 0 0.0017500
3.0 1.000 0 0.0742778
4. Расчетные параметры См, Uм, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч.: 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
              Источники_
                                            Их расчетные параметры_
                                      Um | Xm |
|Номер|
                              Cm
        Код
                 М |Тип |
-п/п-|Объ.Пл Ист.|----
                       ----|----|-[доли ПДК]-|--[м/с]--|----[м]---|
  1 |020301 0001| 0.065278| T | 1.396199 | 6.44 |
                                                 40.6
  2 |020301 0002| 0.065278| T |
                              1.513253 | 9.26 |
                                                 41.0
  3 |020301 0003|
                0.055556| T | 1.019221 | 11.70 |
                                                 46.1
  4 |020301 0004|
                 0.055556| T |
                              1.019163 | 11.70 |
                                                  46.1
                 0.074278 T
  5 |020301 0005|
                               2.097103 | 5.40 |
                                                 34.4 |
  6 | 020301 0010 |
                 0.001750|T | 0.926041 | 1.45
                                                  7.7
  7 |020301 0011| 0.001750| T | 0.926041 | 1.45
                                                 7.7
 8 |020301 0013|
                 0.001750|T|
                               0.305861
                                          3.01
                                                 14.6
  9 |020301 0014| 0.074278| T | 2.097103 | 5.40 |
                                                 34.4
   Суммарный Мq= 0.395472 г/с
   Сумма См по всем источникам = 11.299986 долей ПДК
                                                              Средневзвешенная опасная скорость ветра =
                                               6.47 \text{ m/c}
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч.: 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м}3
  Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
  Расчет по границе санзоны. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 6.47 м/c
6. Результаты расчета в виде таблицы.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м. Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м}3
  Расчет проводился на прямоугольнике 1
  с параметрами: координаты центра X= 17627, Y= 5270
          размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Ump) м/с
  Заказан расчет на высоте Z = 3 метров
                 _Расшифровка_обозначений_
      | Qc - суммарная концентрация [доли ПДК]
      Сс - суммарная концентрация [мг/м.куб]
       Фоп- опасное направл. ветра [ угл. град.] |
       Uoп- опасная скорость ветра [ м/с ] |
      | Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
      | Ки - код источника для верхней строки Ви |
  | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                                                                                                                                    Лист
                                                                                                                        OOC
                                                                                                                                     162
```

```
у= 54860 : Y-строка 1 Стах= 0.000
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
   x= 92012:101930:
      ----:
 у= 44942 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=174)
   x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -27004: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у= 35024 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=172)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
   x= 92012:101930:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у= 25106 : Y-строка 4 Cmax= 0.000 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
           Qc: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000;
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у= 15188 : Y-строка 5 Cmax= 0.002 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=213)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
                                                                                      Q_c: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у= 5270 : Y-строка 6 Cmax= 0.007 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=116)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
                                             Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.007: 0.003: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          163
```

```
у= -4648 : Y-строка 7 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 19)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 \texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-14566 : Y-строка 8 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 10)
   x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7
                                               Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у=-24484 : Y-строка 9 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   y=-34402 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 5)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-44320 : У-строка 11 Стах= 0.000
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42420 : 52340 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
   x= 92012:101930:
   Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                             Координаты точки : X = 2750.0 \text{ м}, Y = 5270.0 \text{ м}, Z = 3.0 \text{ м}
   Максимальная суммарная концентрация | Cs= 0.\overline{00704}29 доли ПДКмр|
                                                                                                                                                                                                        0.0010564 мг/м3
                                                                                                                                                                        Достигается при опасном направлении 116 град.
                                                                                                       и скорости ветра 2.93 м/с
Всего источников: 9. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                                                                                                                                                                                         _ВКЛАДЫ_ИСТОЧНИКОВ_
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
   |----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               164
```

```
1 |020301 0004| T | 0.0556| 0.007026 | 99.8 | 99.8 | 0.126468495 |
            B_{\text{CVMMe}} = 0.007026 99.8
   Суммарный вклад остальных = 0.000017 0.2
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
       ПДКм.р для примеси 0328 = 0.15 \text{ мг/м}3
        _Параметры_расчетного_прямоугольника_No 1_
    Координаты центра : X= 17627 м; Y= 5270 |
    Длина и ширина : L= 168606 м; B= 99180 м |
    Шаг сетки (dX=dY) : D= 9918 м
                                        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
 (Символ ^ означает наличие источника вблизи расчетного узла)
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2-|
4-|
                 . 0.001 0.001 0.002 0.000 . .
                     0.001\ 0.007\ 0.003\ 0.001 .
                    0.001 0.001 0.001 .
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
   В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0070429 долей ПДКмр
                   = 0.0010564 \text{ M}\text{F/M}3
Достигается в точке с координатами: Хм = 2750.0 м
  При опасном направлении ветра : 116 град.
и "опасной" скорости ветра : 2.93 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
       ПДКм.р для примеси 0328 = 0.15 \text{ мг/м}3
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 66
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
                                                                                                                         Лист
                                                                                                              OOC
                                                                                                                          165
```

```
___Расшифровка_обозначений_
                        ______
| Qc - суммарная концентрация [доли ПДК] |
                        | Сс - суммарная концентрация [мг/м.куб] |
                          Фоп- опасное направл. ветра [ угл. град.] |
                          Uоп- опасная скорость ветра [ м/с ] |
                        Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                       | Ки - код источника для верхней строки Ви |
 y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                         x= -66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
              Q_{C}: 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
                    x=-66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
                                                                                               x=-66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
Q_{C}: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 
C_c: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
 x = -66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
  Qc: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 y= 15188: 894: 1010: 1131: 1255: 1380:
 x= -66676: -2709: -2757: -2791: -2809: -2812:
Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                   Координаты точки : X= 8081.0 м, Y= 842.0 м, Z= 3.0 м
 Максимальная суммарная концентрация | \overline{\text{Cs=} 0.00331}66 доли ПДКмр|
                                                                    0.0004975 мг/м3
     Достигается при опасном направлении 338 град.
                                           и скорости ветра 2.32 м/с
Всего источников: 9. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                        _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
     ---|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
     1 |020301 0002| T | 0.0653| 0.001496 | 45.1 | 45.1 | 0.022924591 |
     2\ |020301\ 0003|\ T\ | \quad 0.0556|\ 0.001089\ |\ 32.8\ |\ 78.0\ |\ 0.019603727
     3 | 020301 0014 | T | 0.0743 | 0.000561 | 16.9 | 94.9 | 0.007552748
     4 | 020301 0001 | T | 0.0653 | 0.000143 | 4.3 | 99.2 | 0.002187727 |
                                                                                                                    -----|
                                               В сумме = 0.003289 99.2
            Суммарный вклад остальных = 0.000027 0.8
3. Исходные параметры источников.
     ПК ЭРА v3.0. Модель: MPK-2014
         Город :003 Атырау.
          Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
         Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
         Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                          OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          166
```

```
Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
                                           Y1 | X2 | Y2 |Alf| F | KP |Ди| Выброс
  Код |Тип| Н | D | Wo | V1 | Т
                                    X1 |
Объ.Пл Ист. |~~
                 ~м~~||~~м~~|~м/c~|~м3/c~~|градC~/
                                                                                        ~M~~~~|rp.|~~~|~~~|~~|~~r/c~~
020301 0001 T
               3.0 0.16 41.55 0.8354 450.0 7427.14 6503.00
                                                                          1.0 1.000 0 0.1566667
                                                                          1.0 1.000 0 0.1566667
               2.5 0.12 70.38 0.7310 450.0 6064.64 5426.56
020301 0002 T
020301 0003 T
               2.5 0.13 78.67 1.04 450.0 6369.90 5129.74
                                                                         1.0 1.000 0 0.1333333
               2.5 0.13 78.67 1.04 450.0 4484.38 4411.13
020301 0004 T
                                                                        1.0 1.000 0 0.1333333
020301 0005 T
               3.0 0.33 14.17 1.21 450.0 8724.27 8319.79
                                                                        1.0 1.000 0 0.2971111
020301 0010 T
               2.0 0.50 0.270 0.0530 450.0 4204.37
                                                    5122.91
                                                                         1.0 1.000 0 0.0027500
               2.0 0.50 0.270 0.0530 450.0 5648.34 4974.81
                                                                         1.0 1.000 0 0.0027500
020301 0011 T
020301 0013 T
               2.0 0.50 1.74 0.3416 450.0 6844.15 7470.08
                                                                         1.0 1.000 0 0.0027500
               3.0 0.33 14.17 1.21 450.0 5852.19 6575.25
020301 0014 T
                                                                        1.0 1.000 0 0.2971111
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м3}
              Источники
                                            _Их расчетные параметры_
Номер| Код | М |Тип|
                             Cm
                                    | Um | Xm |
|-п/п-|Объ.Пл Ист.|------[----|-[доли ПДК]-|--[м/с]--|----[м]---|
  1\ |020301\ 0001|\quad 0.156667|\ T\ |\ 0.335088\ |\ 6.44\ |
                                                 81.3
  2 |020301 0002|
                0.156667| T |
                               0.363181 | 9.26 |
                                                 82.1
  3 |020301 0003|
                 0.133333| T |
                               0.244613 | 11.70
  4 |020301 0004|
                 0.133333 T |
                               0.244599 | 11.70
                                                 92.2
  5 |020301 0005|
                0.297111|T | 0.838841 | 5.40 |
                                                 68.8
  6 |020301 0010| 0.002750| T |
                               0.145521 | 1.45
                                                 15.5
  7 |020301 0011| 0.002750| T |
                               0.145521 | 1.45
                                                 15.5
                0.002750|T | 0.048064 | 3.01
  8 | 020301 0013 |
                                                 29.2
  9 | 020301 0014 | 0.297111 | T | 0.838841 | 5.40 |
                                                 68.8
   Суммарный Мд= 1.182472 г/с
   Сумма См по всем источникам = 3.204269 долей ПДК
   Средневзвешенная опасная скорость ветра =
                                              6.52 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м}3
  Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
  Расчет по границе санзоны. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 6.52 м/с
6. Результаты расчета в виде таблицы.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
               Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Вар.расч. :2
  Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м}3
  Расчет проводился на прямоугольнике 1
  с параметрами: координаты центра X= 17627, Y= 5270
          размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
                                                                                                                                   Лист
                                                                                                                       OOC
                                                                                                                                    167
```

ПДКм.р для примеси 0330 = 0.5 мг/м3

```
__Расшифровка_обозначений_
                                           | Qc - суммарная концентрация [доли ПДК]
                                           Сс - суммарная концентрация [мг/м.куб]
                                               Фоп- опасное направл. ветра [ угл. град.] |
                                                 Uоп- опасная скорость ветра [ м/с ] |
                                           Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                         | Ки - код источника для верхней строки Ви |
              |-Если в строке Стах=< 0.05 ПДК, то Фол, Оол, Ви, Ки не печатаются |
  у= 54860 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=175)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у= 44942 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=174)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 35024 : Y-строка 3 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=171)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
                         Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 25106 : Y-строка 4 Cmax= 0.002 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
  x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -716
                                                                       Q_c: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 15188: У-строка 5 Стах= 0.005 долей ПДК (х= 12668.0, z= 3.0; напр.ветра=213)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
                                       Qc: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.005: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  x= 92012:101930:
Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        168
```

```
у= 5270 : Y-строка 6 Cmax= 0.011 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 69)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.003: 0.011: 0.005: 0.003: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.006: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у= -4648 : Y-строка 7 Cmax= 0.004 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 19)
   x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7
                                                                                            Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.002; \ 0.004; \ 0.003; \ 0.002; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у=-14566 : Y-строка 8 Cmax= 0.002 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 11)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-24484 : Y-строка 9 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-34402 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 6)
   x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-44320 : Y-строка 11 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 5)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
\texttt{Cc}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  169
```

```
x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
    Координаты точки: X= 2750.0 м, Y= 5270.0 м, Z= 3.0 м
Максимальная суммарная концентрация | \overline{\text{Cs=} 0.01103}50 доли ПДКмр|
               | 0.0055175 мг/м3 |
 Достигается при опасном направлении 69 град.
         и скорости ветра 1.36 м/с
Всего источников: 9. В таблице заказано вкладчиков не более чем с 95% вклада
                          ВКЛАДЫ_ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
 ----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
 1 |020301 0014| T | 0.2971| 0.006781 | 61.4 | 61.4 | 0.022822673 |
 2 | 020301 0005 | T | 0.2971 | 0.002143 | 19.4 | 80.9 | 0.007214230
3 | 020301 0001 | T | 0.1567 | 0.001397 | 12.7 | 93.5 | 0.008916787
 4 | 020301 0002 | T | 0.1567 | 0.000534 | 4.8 | 98.4 | 0.003409479 |
          В сумме = 0.010855 98.4
  Суммарный вклад остальных = 0.000180 1.6
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
      ПДКм.р для примеси 0330 = 0.5 \text{ мг/м}3
       _Параметры_расчетного_прямоугольника_No 1__
  | Координаты центра : X= 17627 м; Y= 5270 |
   Длина и ширина    : L= 168606 м; В= 99180 м   |
   Шаг сетки (dX=dY) : D= 9918 м
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
 (Символ ∧ означает наличие источника вблизи расчетного узла)
  1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
     3-| . . . . . 0.001 0.001 0.001 0.001 0.001 . . . | . . . . | - 3
4-| . . . . 0.000 0.001 0.001 0.002 0.002 0.001 0.001 . .
5-| . . . . 0.001 0.001 0.002 0.003 0.005 0.002 0.001 0.001 . . . . . . . . |-5
. . . 0.001 0.001 0.002 0.004 0.003 0.002 0.001 0.001 .
                                                    . . . . . |-7
    В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0110350 долей ПДКмр
                  = 0.0055175 мг/м3
                                                                                                             Лист
                                                                                                   OOC
                                                                                                              170
```

```
Достигается в точке с координатами: Хм = 2750.0 м
         ( X-столбец 8, Y-строка 6) Yм = 5270.0 м
На высоте Z = 3.0 м
 При опасном направлении ветра: 69 град.
   и "опасной" скорости ветра : 1.36 м/с
9. Результаты расчета по границе санзоны.
      ПК ЭРА v3.0. Модель: MPK-2014
         Город :003 Атырау.
         Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
         Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
         Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                               ПДКм.р для примеси 0330 = 0.5 \text{ мг/м}3
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
         Всего просчитано точек: 66
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
         Заказан расчет на высоте Z = 3 метров
                                                                __Расшифровка_обозначений_
                       | Qc - суммарная концентрация [доли ПДК] |
                        | Сс - суммарная концентрация [мг/м.куб] |
                          Фоп- опасное направл. ветра [ угл. град.] |
                       | Uoп- опасное паправля встра [ м/с ] |
| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                       | Ки - код источника для верхней строки Ви |
 y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                         x= -66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
                       Q_{C}: 0.004; \ 0.004; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.0
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002
 y= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
                       x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
                      Q_{C}: 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.0
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
 x = -66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.005: 0.005: 0.006:
Cc: 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.003; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.002; 0.0
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
 x=-66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
              Qc: 0.006: 0.006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 y= 15188: 894: 1010: 1131: 1255: 1380:
 x= -66676: -2709: -2757: -2791: -2809: -2812:
    -----:
Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                    Координаты точки : X = 7914.0 \text{ м}, Y = 765.0 \text{ м}, Z = 3.0 \text{ м}
 Максимальная суммарная концентрация | Cs= 0.0061457 доли ПДКмр|
                                                                        0.0030728 мг/м3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 171
```

```
Достигается при опасном направлении 340 град.
           и скорости ветра 2.92 м/с
Всего источников: 9. В таблице заказано вкладчиков не более чем с 95% вклада
                                _ВКЛАДЫ_ИСТОЧНИКОВ
|
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
 1 |020301 0014| T | 0.2971| 0.002228 | 36.3 | 36.3 | 0.007498933
 2 |020301 0003| T |
                    0.1333|\ 0.001918\ |\ 31.2\ |\ 67.5\ |\ 0.014382325
 3 |020301 0002| T | 0.1567| 0.001810 | 29.5 | 96.9 | 0.011556169
            B cymme = 0.005956 96.9
   Суммарный вклад остальных = 0.000190 3.1
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКм.р для примеси 0333 = 0.008 \text{ мг/м}3
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
       |Tип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 |Alf| F | KP |Ди| Выброс
Объ.Пл Ист. | ~~~ | ~~ м~~ | ~~ м~~ | ~м/с~ | ~м3/с~~ | градС~
                                                                                        ~M~~~~|FD.|~~~|~~~|~~|~~|~~F/C~~
020301 0006 T 3.0 0.33 14.17 1.21 450.0 4890.90 5658.01
                                                                        1.0 1.000 0 0.0002022
020301 0008 T
               3.0 0.33 14.17 1.21 450.0 8376.87 6714.37
                                                                        1.0 1.000 0 0.0002022
020301 0012 T 3.0 0.50 2.00 0.3927 450.0 7659.08 8002.76
                                                                        1.0 1.000 0 0.0000182
020301 6014 Π1 2.0
                              0.0 4035.68 3850.56
                                                      2.00
                                                              2.00 0 1.0 1.000 0 0.0000021
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч.: 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКм.р для примеси 0333 = 0.008 \text{ мг/м}3
 - Для линейных и площадных источников выброс является суммарным по
 всей площади, а Cm - концентрация одиночного источника,
 расположенного в центре симметрии, с суммарным М
             Источники
                                           _Их расчетные параметры___
|Номер| Код | М |Тип| Ст | Um | Xm |
-п/п-|Объ.Пл Ист.|--------|----|-[доли ПДК]-|--[м/с]--|----[м]---|
 1 |020301 0006| 0.000202| T | 0.035682 | 5.40 |
 2 |020301 0008| 0.000202| T | 0.035682 | 5.40 | 68.8
 3 |020301 0012| 0.000018| T | 0.009062 | 2.69 | 40.5
 4 |020301 6014| 0.00000213| Π1 | 0.009526 | 0.50 | 11.4 |
  Суммарный Мq= 0.000425 г/с
  Сумма См по всем источникам = 0.089952 долей ПДК
  Средневзвешенная опасная скорость ветра = 4.61 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКм.р для примеси 0333 = 0.008 \text{ мг/м3}
  Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
  Расчет по границе санзоны. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 4.61 м/с
                                                                                                                                  Лист
```

OOC

172

```
6. Результаты расчета в виде таблицы.
           ПК ЭРА v3.0. Модель: MPK-2014
                Город :003 Атырау.
                Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
                Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
                Примесь :0333 - Сероводород (Дигидросульфид) (518)
                                                    ПДКм.р для примеси 0333 = 0.008 \text{ мг/м3}
                Расчет проводился на прямоугольнике 1
                с параметрами: координаты центра X= 17627, Y= 5270
                                                                   размеры: длина(по X)= \bar{1}68606, ширина(по Y)= 99180, шаг сетки= 9918
                Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                Заказан расчет на высоте Z = 3 метров
                                                                                                                Расшифровка обозначений
                                        | Qc - суммарная концентрация [доли ПДК]
                                          Сс - суммарная концентрация [мг/м.куб]
                                          | Фоп- опасное направл. ветра [ угл. град.] |
                                            Uоп- опасная скорость ветра [ м/с ] |
                                          | Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                                       | Ки - код источника для верхней строки Ви
            | -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
  у= 54860 : Y-строка 1 Стах= 0.000
  x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
   x= 92012:101930:
   -----:
  у= 44942 : Y-строка 2 Стах= 0.000
  x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42420 : 52340 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 62258 : 72176 : 82094 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
       x= 92012:101930:
  ----:
  у= 35024 : Y-строка 3 Стах= 0.000
  x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -27004: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -
  x= 92012:101930:
      ----:
  у= 25106 : Y-строка 4 Cmax= 0.000 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\vec{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 15188 : Y-строка 5 Cmax= 0.000 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=212)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Qc: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000;
\texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   173
```

x= 92012:101930:		
y= 5270 : Y-строка 6 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 79)		
x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:		
Qc: 0.000	~~~~~~~	~~~~
x= 92012:101930:		
: Qc: 0.000: 0.000: Cc: 0.000: 0.000:		
у= -4648 : Y-строка 7 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 18)		
x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:	_	
Qc: 0.000	~~~~~~	~~~~
x= 92012:101930:		
x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:		
~~~~~~~~	~~~~~~~	~~~~
x= 92012:101930: :-		
~~~~~~~~		
у=-24484 : Y-строка 9 Cmax= 0.000		
x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:		
	~~~~~~~	~~~~
x= 92012:101930: ::		
у=-34402 : Y-строка 10 Cmax= 0.000		
x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:		
x= 92012:101930:		
~		
: x=-66676 :-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:	_	
	~~~~~~	~~~~
x= 92012:101930:		
: :		
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки: X= 2750.0 м, Y= 5270.0 м, Z= 3.0 м		
Максимальная суммарная концентрация Cs= 0.0007673 доли ПДКмр		
		Лист
	OOC	174

```
0.0000061\ \text{мг/м3}
 Достигается при опасном направлении 79 град.
            и скорости ветра 1.35 м/с
Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
                                 _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
  ---|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
 1 |020301 0006| T | 0.00020216| | 0.000641 | 83.6 | 83.6 | 3.1725137 |
 2 |020301 0008| T | 0.00020216| 0.000122 | 16.0 | 99.5 | 0.605878294 |
             В сумме = 0.000764 99.5
   Суммарный вклад остальных = 0.000003 0.5
                                                               7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Aтырау.
Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКм.р для примеси 0333 = 0.008 мг/м3
         _Параметры_расчетного_прямоугольника_No 1__
    Координаты центра : X= 17627 м; Y= 5270 |
    Длина и ширина    : L= 168606 м; В= 99180 м  |
    Шаг сетки (dX=dY) : D= 9918 м
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
 (Символ ^ означает наличие источника вблизи расчетного узла)
   1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
2-|
                           0.001 0.000 .
11-| .
 В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0007673 долей ПДКмр
                      = 0.0000061 Mг/м3
Достигается в точке с координатами: Хм = 2750.0 м
  ( Х-столбец 8, Y-строка 6) Ум = 5270.0 м
На высоте Z = 3.0 \text{ м}
При опасном направлении ветра : 79 град.
 и "опасной" скорости ветра : 1.35 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
                                                                                                                                         Лист
                                                                                                                            OOC
                                                                                                                                          175
```

```
Примесь :0333 - Сероводород (Дигидросульфид) (518)
                                ПДКм.р для примеси 0333 = 0.008 \text{ мг/м}3
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 66
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
          Заказан расчет на высоте Z = 3 метров
                                                                __Расшифровка_обозначений_
                        | Qc - суммарная концентрация [доли ПДК] |
                         | Сс - суммарная концентрация [мг/м.куб] |
                            Фоп- опасное направл. ветра [ угл. град.] |
                        | Uon- опасное квирава. Встра [ м/с ] |
| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                        | Ки - код источника для верхней строки Ви |
 y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                          x=-66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
   Q_{\text{C}}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.00
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 v= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
                     x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
   x = -66676; 18185; 18190; 18180; 18154; 18113; 18058; 15470; 15419; 15341; 15250; 15150; 11305; 11260; 8081; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 11260; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 112600; 
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
\texttt{Cc}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
 x=-66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
                     Q_{\text{C}}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.00
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 15188: 894: 1010: 1131: 1255: 1380:
       -----:---:
 x= -66676: -2709: -2757: -2791: -2809: -2812:
     .----:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                     Координаты точки : X = 11305.0 \text{ м}, Y = 2718.0 \text{ м}, Z = 3.0 \text{ м}
 Максимальная суммарная концентрация | Cs= 0.0001716 доли ПДКмр|
                                                                       0.0000014 мг/м3
     Достигается при опасном направлении 324 град.
                                            и скорости ветра 5.20 м/с
 Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                              _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
   ----|Объ.Пл Ист.|---|М-(Мq)--|-С[доли ПДК]|------|----|---- b=C/M ---|
1 |020301 0008| Т | 0.00020216| 0.000159 | 92.4 | 92.4 | 0.784134090 |
     2\; |020301\; 0012|\; T\; |\; 0.00001820| \quad 0.000013\; | \quad 7.6\; |\; 100.0\; |\; 0.720436692\; \; |\;
                               Остальные источники не влияют на данную точку.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              176
```

Вар.расч. : 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37

```
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код |Тип| Н | D | Wo | V1 | Т
                                    X1 | Y1 | X2 | Y2 |Alf| F | KP |Ди| Выброс
Объ.Пл Ист.|~~~|~~м~~||~~м~~|~м/с~|~м3/с~~|градС~
                                                                                       ~M~~~~|Γp.|~~~|~~~|~~|~~~Γ/C~~
               3.0 0.16 41.55 0.8354 450.0 7427.14 6503.00
                                                                         1.0 1.000 0 0.8094444
020301 0002 T
              2.5 0.12 70.38 0.7310 450.0 6064.64 5426.56
                                                                        1.0 1.000 0 0.8094444
                                                                       1.0 1.000 0 0.6888889
020301 0004 T
               2.5\ \ 0.13\ 78.67\quad 1.04\ 450.0\quad 4484.38\quad 4411.13
                                                                        1.0 1.000 0 0.6888889
              3.0 0.33 14.17 1.21 450.0 8724.27 8319.79
                                                                       1.0 1.000 0 1.124778
020301 0005 T
              2.0 0.50 0.270 0.0530 450.0 4204.37 5122.91
020301 0010 T
                                                                        1.0 1.000 0 0.0180000
020301 0011 T
               2.0 0.50 0.270 0.0530 450.0 5648.34 4974.81
                                                                        1.0 1.000 0 0.0180000
1.0 1.000 0 0.0180000
1.0 1.000 0 1.124778
                                                              2.00 0 1.0 1.000 0 0.0129300
                                                       2.00
020301 6009 П1 2.0
                              0.0 4702.12 6368.23
                                                              2.00 0 1.0 1.000 0 0.0176000
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м}3
- Для линейных и площадных источников выброс является суммарным по
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                       ~~~~~~~~~~~~
              Источники
                                           _Их расчетные параметры___
| Номер| Код | М | Тип | Ст | Um | Xm |
|-п/п-|Объ.Пл Ист.|-----[м/c]---[м/c]---[м]---
 1 |020301 0001| 0.809444| T | 0.173129 | 6.44 |
                                                81.3
  2 |020301 0002| 0.809444| T | 0.187643 | 9.26 |
                                               82.1
  3 |020301 0003| 0.688889| T | 0.126383 | 11.70 | 92.2
  4 |020301 0004| 0.688889| T |
                              0.126376 | 11.70 |
                                                92.2
  5 \hspace{.1cm} | 020301 \hspace{.1cm} 0005 | \hspace{.1cm} 1.124778 | \hspace{.1cm} T \hspace{.1cm} | \hspace{.1cm} 0.317561 \hspace{.1cm} | \hspace{.1cm} 5.40 \hspace{.1cm} |
                                                68.8
  6 |020301 0010| 0.018000| T | 0.095250 | 1.45
                                                15.5
  7 |020301 0011|
                 0.018000| T |
                              0.095250 | 1.45
                                                15.5
  8 |020301 0013| 0.018000| T | 0.031460 | 3.01
                                                29.2
  9 | 020301 0014 | 1.124778 | T | 0.317561 | 5.40 |
                                                68.8
 10 |020301 6008| 0.012930| П1 | 0.092363 | 0.50
                                               | 11.4
 11 \mid 020301 \mid 6009 \mid 0.017600 \mid \Pi1 \mid 0.125722 \mid 0.50 \mid 11.4 \mid
   Суммарный Мq= 5.330752 г/с
   Сумма См по всем источникам = 1.688699 долей ПДК
   Средневзвешенная опасная скорость ветра = 5.76 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП)
                                    Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м}3
  Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
  Расчет по границе санзоны. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucb= 5.76 м/с
                                                                                                                                 Лист
                                                                                                                     OOC
                                                                                                                                  177
```

```
6. Результаты расчета в виде таблицы.
          ПК ЭРА v3.0. Модель: MPK-2014
                 Город :003 Атырау.
                 Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
                 Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
                 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                                                        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м}3
                 Расчет проводился на прямоугольнике 1
                 с параметрами: координаты центра X= 17627, Y= 5270
                                                                       размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
                 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                 Заказан расчет на высоте Z = 3 метров
                                                                                                                       _Расшифровка_обозначений_
                                          | Qc - суммарная концентрация [доли ПДК] |
                                                Сс - суммарная концентрация [мг/м.куб]
                                               Фоп- опасное направл. ветра [ угл. град.] |
                                               Uоп- опасная скорость ветра [ м/с ] |
                                               Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                          | Ки - код источника для верхней строки Ви |
                    -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
  у= 54860 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=175)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
C_c: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.001; 0.001; 0.001; 0.001; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 44942 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=174)
  x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 35024 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=171)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
\vec{Cc}: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
  x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  у= 25106 : Y-строка 4 Cmax= 0.001 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=197)
  x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.004: 0.004: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        178
```

```
x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у= 15188 : Y-строка 5 Стах= 0.002 долей ПДК (x= 12668.0, z= 3.0; напр.ветра=213)
    x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.003: 0.005: 0.008: 0.010: 0.005: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 92012:101930:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у= 5270: Y-строка 6 Cmax= 0.005 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=116)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 2750 : 
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.005: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.003: 0.006: 0.024: 0.011: 0.005: 0.003: 0.001: 0.001: 0.000: 0.000: 0.000:
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у= -4648 : Y-строка 7 Cmax= 0.002 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 18)
    x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: \ 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -17086: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7168: -7
                                                       Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.003: 0.005: 0.008: 0.006: 0.004: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у=-14566: У-строка 8 Стах= 0.001 долей ПДК (х= 2750.0, z= 3.0; напр.ветра= 11)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.004: 0.003: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000:
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у=-24484 : Y-строка 9 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
    x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
    у=-34402 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 6)
    x = -66676: -56758: -46840: -36922: -27004: -17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -7168: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22586: 32504: 42422: 52340: 62258: 72176: 82094: -71688: 2750: 12688: 22588: 72176: 82094: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -71688: -716
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      179
```

:::::::::		
x= 92012:101930:		
: Qc: 0.000: 0.000: Cc: 0.000: 0.000:		
x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:		
Qc: 0.000	~~~~~~~	J~~~~
x= 92012:101930: :		
Qc: 0.000: 0.000: Cc: 0.000: 0.000:		
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки: X= 2750.0 м, Y= 5270.0 м, Z= 3.0 м		
Максимальная суммарная концентрация Cs= 0.0048503 доли ПДКмр 0.0242517 мг/м3		
Достигается при опасном направлении 116 град.		
и скорости ветра 2.91 м/с Всего источников: 11. В таблице заказано вкладчиков не более чем с 95% вклада		
ВКЛАДЫ_ИСТОЧНИКОВ		
В сумме = 0.004834 99.7 Суммарный вклад остальных = 0.000016 0.3		
7. Суммарные концентрации в узлах расчетной сетки. ПК ЭРА v3.0. Модель: MPK-2014 Город :003 Атырау. Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м. Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКм.р для примеси 0337 = 5.0 мг/м3		
Параметры_расчетного_прямоугольника_No 1 Координаты центра : X= 17627 м; Y= 5270 Длина и ширина : L= 168606 м; B= 99180 м Шаг сетки (dX=dY) : D= 9918 м		
Направление ветра: автоматический поиск опасного направления от 0 до 360 град, Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмp) м/с Заказан расчет на высоте Z = 3 метров		
(Символ ^ означает наличие источника вблизи расчетного узла)		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 *		
2-		
3-		
4- 0.001 0.001 0.001		
5- 0.001 0.001 0.002 0.002 0.001 0.000 -5		
6-C 0.001 0.001 0.005 0.002 0.001 0.001		
	_	Лист
	OOC	180

```
7-| . . . . . 0.001 0.001 0.002 0.001 0.001 . . . . . . . . . |-7
                          10-| . . . . .
                                                                                                                                                                                                                                                               |-11
                             2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
              В целом по расчетному прямоугольнику:
 Максимальная концентрация -----> См = 0.0048503 долей ПДКмр
                                                                                         = 0.0242517 \text{ M}\text{г/M}\text{3}
 Достигается в точке с координатами: Хм = 2750.0 м
          При опасном направлении ветра: 116 град.
   и "опасной" скорости ветра : 2.91 м/с
9. Результаты расчета по границе санзоны.
      ПК ЭРА v3.0. Модель: MPK-2014
          Город :003 Атырау. Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
          Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
          Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                                  ПДКм.р для примеси 0337 = 5.0 \text{ мг/м}3
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 66
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
          Заказан расчет на высоте Z = 3 метров
                                                                        _Расшифровка_обозначений_
                           | Qc - суммарная концентрация [доли ПДК] |
                            Сс - суммарная концентрация [мг/м.куб]
                            | Фоп- опасное направл. ветра [ угл. град.] |
                             Uоп- опасная скорость ветра [ м/с ] |
                            Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                          | Ки - код источника для верхней строки Ви |
 y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
 x= -66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
                          Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002
C_{\text{C}}: 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.010; 0.01
 y= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
 x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
    Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008: 0.008:
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
                        x=-66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
  Qc: 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002;
\texttt{Cc}: 0.008; \ 0.008; \ 0.008; \ 0.008; \ 0.008; \ 0.008; \ 0.009; \ 0.009; \ 0.009; \ 0.009; \ 0.009; \ 0.009; \ 0.011; \ 0.011; \ 0.014; \ 0.011; \ 0.014; \ 0.011; \ 0.014; \ 0.011; \ 0.014; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.0
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
              x = -66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
                      Q_{\text{C}}: 0.003; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 
\mathsf{Cc}: 0.014; \ 0.014; \ 0.012; \ 0.012; \ 0.012; \ 0.012; \ 0.011; \ 0.011; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.010; \ 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      181
```

```
y= 15188: 894: 1010: 1131: 1255: 1380:
x= -66676: -2709: -2757: -2791: -2809: -2812:
 -----:
Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 7914.0 \text{ м}, Y = 765.0 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0028816 доли ПДКмр|
                      0.0144078 мг/м3
 Достигается при опасном направлении 340 град.
           и скорости ветра 2.92 м/с
Всего источников: 11. В таблице заказано вкладчиков не более чем с 95% вклада
                               __ВКЛАДЫ_ИСТОЧНИКОВ_
       Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
Ном.
  ---|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
 1 |020301 0003| T | 0.6889| 0.000991 | 34.4 | 34.4 | 0.001438229
 2 | 020301 0002 | T | 0.8094 | 0.000935 | 32.5 | 66.8 | 0.001155620
 3 |020301 0014| T | 1.1248| 0.000843 | 29.3 | 96.1 | 0.000749892 |
             B cymme = 0.002770 96.1
   Суммарный вклад остальных = 0.000112 3.9
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м. Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
            цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
            кремнезем, зола углей казахстанских месторождений) (494)
        ПДКм.р для примеси 2908 = 0.3 мг/м3
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  ~~м~~||~~м~~|~м/с~|~м3/с~~|градС~
Объ.Пл Ист. |~~~|
                                                                                         ~M~~~~|гр.|~~~|~~~|~~|~~г/с~~
                                                                2.00 0 3.0 1.000 0 2.400000
020301 6002 П1 2.0
                               0.0 6627.40 5701.79
                                                        1.00
020301 6003 Π1 2.0
                               0.0\quad 6183.11\quad 5849.89
                                                                2.00 0 3.0 1.000 0 2.667000
                                                        1.00
020301 6004 Π1 2.0
                               0.0 4776.18 3813.53
                                                        1.00
                                                                2.00 0 3.0 1.000 0 0.0699000
020301 6005 П1 2.0
                               0.0 6960.63 8071.37
                                                                2.00 0 3.0 1.000 0 0.0699000
                                                        1.00
020301 6007 \Pi1 2.0
                               0.0 6923.60 5627.74
                                                        2.00
                                                                2.00\ \ 0\ 3.0\ 1.000\ 0\ \ 1.011000
020301\ 6008\ \Pi 1 2.0
                               0.0
                                    7553.02 5738.81
                                                        2.00
                                                                2.00 0 3.0 1.000 0 0.0009720
020301 6016 П1 2.0
                                                                2.00 0 3.0 1.000 0 0.0088400
                               0.0
                                   5070.51 4542.33
                                                        2.00
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
            цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
            кремнезем, зола углей казахстанских месторождений) (494)
        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м}3
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
              _Источники_
                                            _Их расчетные параметры___
|Номер| Код | М |Тип| Ст | Um | Xm |
|-п/п-|Объ.Пл Ист.|-----[м/с]---[м/с]---[м/с]---[м]---[
 1 |020301 6002| 2.400000| Π1 | 857.196533 | 0.50 | 5.7 |
  2 \ | 020301 \ 6003 | \quad 2.667000 | \ \Pi1 \ | \ 952.559570 \ | \quad 0.50 \ | \quad 5.7 \ |
  3 |020301 6004| 0.069900| H1 | 24.965847 | 0.50 |
                                                   5.7 I
  4 |020301 6005| 0.069900| Π1 | 24.965847 | 0.50 |
 5 |020301 6007| 1.011000| Π1 | 361.094055 | 0.50 | 5.7 |
                                                                                                                                    Лист
                                                                                                                       OOC
                                                                                                                                     182
```

```
6 \mid 020301 \mid 6008 \mid 0.000972 \mid \Pi1 \mid 0.347165 \mid 0.50
          7 |020301 6016| 0.008840| \Pi1 | 3.157341 | 0.50 |
                                                                                                                                                                                                                                              5.7 I
              Суммарный Мq= 6.227612 г/с
              Сумма См по всем источникам = 2224.286 долей ПДК
              Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
       ПК ЭРА v3.0. Модель: MPK-2014
            Город :003 Атырау.
            Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
            Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
            Сезон :ЛЕТО (температура воздуха 30.9 град.С)
            Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                                                         цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                                                          кремнезем, зола углей казахстанских месторождений) (494)
                                         ПДКм.р для примеси 2908 = 0.3 мг/м3
            Расчет по прямоугольнику 001: 168606х99180 с шагом 9918
            Расчет по границе санзоны. Покрытие РП 001
            Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
            Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
       ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
             Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
            Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
            Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                                                          цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                                                          кремнезем, зола углей казахстанских месторождений) (494)
                                        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м}3
            Расчет проводился на прямоугольнике 1
            с параметрами: координаты центра X= 17627, Y= 5270
                                                  размеры: длина(по X)= 168606, ширина(по Y)= 99180, шаг сетки= 9918
             Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
            Заказан расчет на высоте Z = 3 метров
                                                                                  _Расшифровка_обозначений_
                              | Qc - суммарная концентрация [доли ПДК]
                               | Сс - суммарная концентрация [мг/м.куб]
                                 Фоп- опасное направл. ветра [ угл. град.] |
                                  Uoп- опасная скорость ветра [ м/с ] |
                                Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                             Ки - код источника для верхней строки Ви
           .
|-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uoп, Ви, Ки не печатаются |
 у= 54860 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=176)
 x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у= 44942 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=175)
 x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 x= 92012:101930:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  183
```

```
Qc: 0.000: 0.000:
   Cc: 0.000: 0.000:
     у= 35024 : Y-строка 3 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=173)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
 Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
     x= 92012:101930:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
     у= 25106 : Y-строка 4 Cmax= 0.002 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=169)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.002; \ 0.002; \ 0.001; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
     x= 92012:101930:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
     у= 15188 : Y-строка 5 Cmax= 0.008 долей ПДК (x= 2750.0, z= 3.0; напр.ветра=158)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.003: 0.008: 0.006: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 Cc: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.001; 0.002; 0.002; 0.001; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.0
     x= 92012:101930:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
     у= 5270 : Y-строка 6 Cmax= 0.080 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 82)
     x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 : 7250 
                                                         Qc: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.001; \ 0.004; \ 0.080; \ 0.026; \ 0.003; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000;
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.024: 0.008: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
                                                                                                   : : 89:89:88:82:274:272:271: : :
 Uоп:
                                                                                                      : : 5.20:5.20:5.20:5.20:5.20:5.20:5.20:
                                                                                                                : : :
                                                   : : : : 0.001: 0.002: 0.042: 0.011: 0.001: :
Ви:
                                                                                                                                                                                                        : 6003 : 6003 : 6003 : 6002 : 6003 :
 Ки:
                                                         : : : :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        : :
 Ви:
                                                                                                                                                                                                                 : 0.000: 0.002: 0.029: 0.010: 0.001:
                                                                                                                         : : 6002:6002:6002:6003:6002:
 Ки:
     x= 92012:101930:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
 Фоп:
                                                                :
 Uon:
                                               : :
Ви:
 Ки:
 Ви:
                                                           :
Ки:
     у= -4648 : Y-строка 7 Cmax= 0.007 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 20)
     x=-66676:-56758:-46840:-36922:-27004:-17086: -7168: 2750: 12668: 22586: 32504: 42422: 52340: 62258: 72176: 82094:
 Q_{C}: 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.001; \ 0.002; \ 0.007; \ 0.005; \ 0.002; \ 0.001; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.000; \ 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 184
```

```
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-14566 : Y-строка 8 Cmax= 0.002 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 10)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-24484 : Y-строка 9 Cmax= 0.001 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 7)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82094 : 42422 : 72176 : 82176 : 42422 : 72176 : 82176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
O_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-34402 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 5)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 2750 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 12668 : 1
Q_{C}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   у=-44320 : Y-строка 11 Cmax= 0.000 долей ПДК (x= 2750.0, z= 3.0; напр.ветра= 4)
   x = -66676 : -56758 : -46840 : -36922 : -27004 : -17086 : -7168 : 2750 : 12668 : 22586 : 32504 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 42422 : 52340 : 62258 : 72176 : 82094 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 72176 : 721
                                               Q_{C}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
   x= 92012:101930:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
   Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                                 Координаты точки: X= 2750.0 м, Y= 5270.0 м, Z= 3.0 м
   Максимальная суммарная концентрация | Cs= 0.0800235 доли ПДКмр|
                                                                                                                                                                                   | 0.0240071 мг/м3 |
             Достигается при опасном направлении 82 град.
                                                                                                              и скорости ветра 5.20 м/с
 Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                                                                                                                                                                                                                    _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        OOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     185
```

```
3 | 020301 6007 | TT1 | 1.0110 | 0.009281 | 11.6 | 100.0 | 0.009180069 |
           B_{\text{CVMMP}} = 0.080017 100.0
   Суммарный вклад остальных = 0.000007 0.0
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м.
  Вар.расч. : 2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
          цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
          кремнезем, зола углей казахстанских месторождений) (494)
       ПДКм.р для примеси 2908 = 0.3 мг/м3
       _Параметры_расчетного_прямоугольника_No 1__
   Координаты центра : X= 17627 м; Y= 5270 |
    Длина и ширина : L= 168606 м; B= 99180 м |
   Шаг сетки (dX=dY) : D= 9918 м
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
 (Символ ∧ означает наличие источника вблизи расчетного узла)
     2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
     3-1.
     0.001 0.001 0.004 0.080 0.026 0.003 0.001 . .
     . . . . . 0.001 0.001 0.001 0.000 . .
                                                      |-10
11-| .
                                                     |-11
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
   В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0800235 долей ПДКмр
                  = 0.0240071 \text{ M}\text{г/M}\text{3}
Достигается в точке с координатами: Хм = 2750.0 м
  ( X-столбец 8, Y-строка 6) Ум =
На высоте Z = 3.0 м
                          Y_M = 5270.0 M
При опасном направлении ветра: 82 град.
и "опасной" скорости ветра : 5.20 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0203 РООС, МЕСТОРОЖДЕНИИ БОРКЫЛДАКТЫ проек. Гл. 1650 м. Вар.расч. :2 Расч.год: 2023 (СП) Расчет проводился 04.06.2023 17:37
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
          цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
          кремнезем, зола углей казахстанских месторождений) (494)
       ПДКм.р для примеси 2908 = 0.3 \text{ мг/м}3
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 66
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
  Заказан расчет на высоте Z = 3 метров
                                                                                                                   Лист
```

ooc t

186

```
___Расшифровка_обозначений_
                       ______
| Qc - суммарная концентрация [доли ПДК] |
                       | Сс - суммарная концентрация [мг/м.куб]
                          Фоп- опасное направл. ветра [ угл. град.] |
                          Uоп- опасная скорость ветра [ м/с ] |
                       Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                      | Ки - код источника для верхней строки Ви |
 y= 54860: 1505: 4537: 4621: 4740: 7328: 7441: 7547: 7643: 12967: 12999: 13080: 13149: 13204: 16384:
                         x= -66676: -2798: -2281: -2263: -2223: -1188: -1135: -1067: -987: 4041: 4073: 4168: 4273: 4386: 12076:
                   Qc: 0.008: 0.008: 0.011: 0.011: 0.011: 0.015: 0.015: 0.015: 0.016: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015:
Cc: 0.002: 0.002: 0.003: 0.003: 0.003: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004: 0.004: 0.002:
 y= 44942: 16434: 16455: 16459: 16449: 16422: 16380: 16324: 16254: 16172: 11292: 11251: 11152: 11045: 10931:
                   x = -66676: 12233: 12357: 12482: 12607: 12730: 12848: 12961: 13065: 13160: 17892: 17932: 18010: 18075: 18127:
Q_{\text{C}}: 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001:
 y= 35024: 10687: 10561: 10436: 10313: 10195: 10082: 5571: 5492: 5395: 5307: 5232: 2718: 2691: 842:
 x=-66676: 18185: 18190: 18180: 18154: 18113: 18058: 15470: 15419: 15341: 15250: 15150: 11305: 11260: 8081:
Q_{\text{C}}: 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.011; \ 0.011; \ 0.011; \ 0.011; \ 0.012; \ 0.031; \ 0.032; \ 0.036; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 0.005; \ 
Cc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.002; 0.002; 0.003; 0.003; 0.003; 0.003; 0.004; 0.009; 0.010; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.011; 0.0
 y= 25106: 765: -1084: -1117: -1137: -1142: -1068: -1059: -1035: -996: -941: -874: -793: 612: 685:
 x = -66676: 7914: 2739: 2625: 2501: 2375: -361: -465: -588: -707: -820: -926: -1022: -2501: -2570:
  Qc: 0.035: 0.035: 0.014: 0.014: 0.014: 0.014: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008:
Cc: 0.011; 0.011; 0.004; 0.004; 0.004; 0.004; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.002; 0.002; 0.002; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.0
 y= 15188: 894: 1010: 1131: 1255: 1380:
 x= -66676: -2709: -2757: -2791: -2809: -2812:
    -----;----;-----;-----;-----;-----;
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                  Координаты точки : X= 8081.0 м, Y= 842.0 м, Z= 3.0 м
 Максимальная суммарная концентрация | \overline{\text{Cs=} 0.03561}44 доли ПДКмр|
                                                                    0.0106843 мг/м3
     Достигается при опасном направлении 342 град.
                                         и скорости ветра 5.20 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                                    _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
    ----|Объ.Пл Ист.|---|---М-(Mq)--|-С[доли ПДК]|------|----- b=C/M ---|
     1\ |020301\ 6002|\ \Pi1| \quad 2.4000|\ \ 0.015836\ |\ \ 44.5\ |\ \ 44.5\ |\ 0.006598353\ |
    2 | 020301 6003 | П1 | 2.6670 | 0.014224 | 39.9 | 84.4 | 0.005333447 | 3 | 020301 6007 | П1 | 1.0110 | 0.005497 | 15.4 | 99.8 | 0.005437363 |
                                              В сумме = 0.035558 99.8
            Суммарный вклад остальных = 0.000057 0.2
```

Лист

OOC